Feature Data Objects (FDO)

Developer’s Guide

Y
7
QL

O
O

=

<

© 2008 Autodesk, Inc. All Rights Reserved. Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not be
reproduced in any form, by any method, for any purpose.

Certain materials included in this publication are reprinted with the permission of the copyright holder.

Trademarks

The following are registered trademarks or trademarks of Autodesk, Inc., in the USA and other countries: 3DEC (design/logo), 3December,
3December.com, 3ds Max, ADI, Alias, Alias (swirl design/logo), AliasStudio, AliaslWavefront (design/logo), ATC, AUGI, AutoCAD, AutoCAD
Learning Assistance, AutoCAD LT, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface, Autodesk, Autodesk Envision, Autodesk
Insight, Autodesk Intent, Autodesk Inventor, Autodesk Map, Autodesk MapGuide, Autodesk Streamline, AutoLISP, AutoSnap, AutoSketch,
AutoTrack, Backdraft, Built with ObjectARX (logo), Burn, Buzzsaw, CAICE, Can You Imagine, Character Studio, Cinestream, Civil 3D, Cleaner,
Cleaner Central, ClearScale, Colour Warper, Combustion, Communication Specification, Constructware, Content Explorer, Create>what's>Next>
(design/logo), Dancing Baby (image), DesignCenter, Design Doctor, Designer's Toolkit, DesignKids, DesignProf, DesignServer, DesignStudio,
DesignlStudio (design/logo), Design Web Format, DWF, DWG, DWG (logo), DWG Extreme, DWG TrueConvert, DWG TrueView, DXF, Ecotect,
Exposure, Extending the Design Team, FBX, Filmbox, FMDesktop, Freewheel, GDX Driver, Gmax, Green Building Studio, Heads-up Design,
Heidi, HumanlK, IDEA Server, i-drop, ImageModeler, iMOUT, Incinerator, Inventor, Inventor LT, Kaydara, Kaydara (design/logo), Kynapse,
Kynogon, LandXplorer, LocationLogic, Lustre, Matchmover, Maya, Mechanical Desktop, MotionBuilder, Movimento, Mudbox, NavisWorks,
ObjectARX, ObjectDBX, Open Reality, Opticore, Opticore Opus, PolarSnap, PortfolioWall, Powered with Autodesk Technology, Productstream,
ProjectPoint, ProMaterials, RasterDWG, Reactor, ReaDWG, Real-time Roto, REALVIZ, Recognize, Render Queue, Retimer,Reveal, Revit, Showcase,
ShowMotion, SketchBook, SteeringWheels, Stitcher, StudioTools, Topobase, Toxik, TrustedDWG, ViewCube, Visual, Visual Construction, Visual
Drainage, Visual Landscape, Visual Survey, Visual Toolbox, Visual LISP, Voice Reality, Volo, Vtour, Wiretap, and WiretapCentral.

The following are registered trademarks or trademarks of Autodesk Canada Co. in the USA and/or Canada and other countries: Backburner,
Discreet, Fire, Flame, Flint, Frost, Inferno, Multi-Master Editing, River, Smoke, Sparks, Stone, and Wire.

The following are registered trademarks or trademarks of Moldflow Corp. in the USA and/or other countries: Moldflow, MPA, MPA (design/logo),
Moldflow Plastics Advisers, MPI, MPI (design/logo), Moldflow Plastics Insight, MPX, MPX (design/logo), Moldflow Plastics Xpert
All other brand names, product names or trademarks belong to their respective holders.

Disclaimer

THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLE BY AUTODESK, INC. "AS IS." AUTODESK, INC. DISCLAIMS
ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS.

Published By: Autodesk, Inc.
111 Mclnnis Parkway
San Rafael, CA 94903, USA

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

About This Guide 1
Audience and Purpose. L oo 1
How This Guide Is Organized 1
What's New o o e 3
Introduction. L L oo oo 5
What Is the FDO API? 5

From the Perspective of the Client Application User. S

From the Perspective of the Client Application Engineer. 5
Getting Started Lo 6
FDO Architecture and Providers. 7
What Isa Provider? Lo 9
Developing Applications 11
FDO Concepts. i it e 13
DataConcepts. o L e 13
Operational Concepts. o oo 18
Development Practices. 21
Memory Management. L0000 21
Collections. e 23
Exception Handling, 23

eee
m

Chapter 5

Chapter 6

Chapter 7

Chapter 8

iv | Contents

Exception Messages Lo oo 24

Managing FdoPtr Behaviors. oo 25
Establishing a Connection. 27
Connection Semantics. oo oo 27
Establishing a Connection 29
FDO Capabilities. 35
FDO Capabilities oo oo 35
Introduction. o L oo 35
Provider Type oo 36
Command. e 37
Connection L L o o 43
Expression. oo oo 47
Filter. o e 74
Geometry 77
Raster. e 78
Schema 0 00 . 79
Expressible as Boolean 82

Not Expressible asa Boolean 83

Schema Management. 85
Schema Package L o 85
Schema Mappings. Lo e 87
Schema Overrides Lo 88
Working with Schemas 0. 88
FDOFeatureClass o o v i v it vttt e e 90
FDOCIass« .« v v it e e e e e e e 90
Non-Feature Class Issues. 91
ModifyingModels. L oL 94
Schema Element States. 94
Rollback Mechanism 95
FDO XML Format. oo o 95
Creating and Editing a GML Schema File. 101
Schema Management Examples. 111
Data Maintenance. 119
Data Maintenance Operations 119
Inserting Values. L. 119
Updating Values L .. 125
Deleting Values 126
Related Class Topics o oot v v it n e 127

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Performing Queries.00 129

Creatinga Query. o o e 129
Query Example. Lo 130
Long Transaction Processing. 135
What Is Long Transaction Processing? 135
Supported Interfaces. oL oo 136
Filter and Expression Languages. 139
Filters. L 139
Expressions. Lo e 140
Filter and Expression Text. 140
Language Issues. oo o 141
Provider-Specific Constraints on Filter and Expression Text . . . 141
Filter Grammar.o Lo 141
Expression Grammar.o 143
Filter and Expression Keywords 144
DataTypes.« . o o o e 144
Identifier. Lo 144
Parameter. o oo 144
String 144
Integer. 145
Double. 145
DateTime. 145
Operators.o e 146
Special Character., 147
Geometry Value Lo Lo 147
The Geometry API. 151
Introduction L L Lo 151
FGFand WKB. o o 151
FGF Binary Specification 152
FGFText. e 158
Abstract and Concrete Classes 158
Geometry Types.o e 159
Mapping Between Geometry and Geometric Types. 160
Spatial Context. 161
Specify Dimensionality When Creating Geometries Using String
Specifications L Lo 161
Inserting Geometry Values., 162
FDO Cookbook. 163
Introduction L Lo oo 163

Contents | v

Appendix A

vi | Contents

Recommendations e 163

Registry o 163
Connection L o e 164
Capabilities. L 168
DataStore. 171
User Management. oo 173
Spatial Context.o 175
Basic Schema Operations 178
InsertData. 181
SelectData. 182
Select Aggregate Data. 183
DeleteData. 184
Schema Overrides 0oL 184
Xml Serialize/Deserialize o000 194
CH# . 194
Geometryo e 196
Construction. L o o 196
C# Namespaces. o v v v v v v 197
C# Geometry Scaffolding Classes 197
C# Geometries Constructed using

IDirectPositionlmpl, 200

C# Geometries Constructed Using Geometry
Subcomponents. Lo 201
C# Aggregate Geometries. 202
C# Geometries from Text Specifications. 204
Deconstruction oo oo 204
OSGeo FDO Provider for ArcSDE. 211
What Is FDO Provider for ArcSDE? 211
FDO Provider for ArcSDE Software Requirements. 211
Installed Components. 211
External Dependencies. 212
FDO Provider for ArcSDE Limitations 212
ArcSDE Limitations Lo o oo 212
Relative to ArcObjects API and ArcGIS Server API. 213
Curved Segments. 213
Locking and Versioning 213
Table Creation 214
Identity Row ID Column and Enable Row Locking 214
Disable Row Locking and Enable Versioning 215
FDO Provider for ArcSDE Connection. 216
Data Type Mappings. o oo 217
Creating a Feature Schema 218
Logical to Physical Schema Mapping 223
Physical to Logical Schema Mapping 223
FDO Provider for ArcSDE Capabilities 227

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Physical to Logical Schema Mappings
FDO Provider for ODBC Capabilities

Creating SHP Files for the Logical to Physical Schema Mapping
Creating SHP Files for the Physical to Logical Schema Mapping
Logical to Physical Schema Mapping
Physical to Logical Schema Mapping
FDO Provider for SHP Capabilities

0OSGeo FDO Provider for SQL Server Spatial

Logical to Physical Schema Mapping
Physical to Logical Schema Mapping

Contents

vii

About This Guide

The FDO Developer’s Guide introduces the Feature Data Objects (FDO) application programming
interface (API) and explains how to use its customization and development features.

NOTE For detailed information about installing the FDO SDK and getting started using
the FDO API, see The Essential FDO (FET_TheEssentialFDO).

Audience and Purpose

This guide is intended to be used by developers of FDO applications. It introduces
the FDO API, explains the role of a feature provider, and provides detailed
information and examples about how to code your application.

How This Guide Is Organized

This guide consists of the following chapters and appendixes:

B Introduction, provides an overview of the FDO API and the function of FDO
feature providers.

m FDO Concepts on page 13, describes the key data and operational concepts
upon which FDO is constructed.

B Development Practices on page 21, discusses the best practices to follow
when using FDO for application development.

B Establishing a Connection on page 27, describes how to establish a
connection to an FDO provider.

2 | Chapter |

Capabilities, discusses the Capabilities API, which is used to determine the
capabilities of a particular provider.

Schema Management on page 85, describes how to create and work with
schemas and presents the issues related to schema management.

Data Maintenance on page 119, provides information about using the FDO
API to maintain the data.

Performing Queries on page 129, describes how to create and perform
queries.

Long Transaction Processing on page 1335, discusses long transactions (LT)
and how to implement LT processing in your application.

Filter and Expression Languages on page 139, discusses the use of filter
expressions to specify to an FDO provider how to identify a subset of the
objects of an FDO data store.

The Geometry API on page 151, discusses the various Geometry types and
formats and describes how to work with the Geometry API to develop
FDO-based applications.

0SGeo FDO Provider for ArcSDE on page 211, discusses development issues
that apply when using FDO Provider for ESRI® ArcSDE®.

0OSGeo FDO Provider for MySQL on page 233, discusses development issues
that apply when using FDO Provider for MySQL.

OSGeo FDO Provider for ODBC on page 243, discusses development issues
that apply when using FDO Provider for ODBC.

OSGeo FDO Provider for SDF on page 255, discusses development issues
that apply when using FDO Provider for SDE.

OSGeo FDO Provider for SHP on page 263, discusses development issues
that apply when using FDO Provider for SHP (Shape).

0OSGeo FDO Provider for WES on page 279, discusses development issues
that apply when using FDO Provider for WEFS.

OSGeo FDO Provider for WMS on page 285, discusses development issues
that apply when using FDO Provider for WMS.

Expression Functions, outlines the signatures and implementation details
for the enhanced expression functions.

About This Guide

What’s New

This section summarizes the changes and enhancements you will find in this
version of FDO.

Enhanced Set of Expression Functions

The enhanced set includes aggregate, conversion, date, mathematical, numeric,
string and geometry functions. All functions are supported by all providers,
with the exception of the Raster, WFS and WMS providers.

For more information and implementation details about the expression
function signatures, the RDBMS-specific built-in support for some of the
functions, and the provider-specific support, see the appendix Expression
Functions.

What's New | 3

Introduction

You can use the APIs in the FDO API to manipulate, define, and analyze geospatial information.

This chapter introduces application development with the FDO API and explains the role of
a feature provider.

What Is the FDO API?

From the Perspective of the Client Application User

The FDO API is a set of APIs used for creating, managing, and examining
information, enabling Autodesk GIS products to seamlessly share spatial and
non-spatial information, with minimal effort.

FDO is intended to provide consistent access to feature data, whether it comes
from a CAD-based data source, or from a relational data store that supports rich
classification. To achieve this, FDO supports a model that can readily support
the capabilities of each data source, allowing consumer applications functionality
to be tailored to match that of the data source. For example, some data sources
may support spatial queries, while others do not. Also, a flexible metadata model
is required in FDO, allowing clients to adapt to the underlying feature schema
exposed by each data source.

From the Perspective of the Client Application
Engineer

The FDO API provides a common, general purpose abstraction layer for accessing
geospatial data from a variety of data sources. The API is, in part, an interface

specification of the abstraction layer. A provider, such as OSGeo FDO Provider
for MySQL, is an implementation of the interface for a specific type of data
source (for example, for a MySQL relational database). The API supports the
standard data store manipulation operations, such as querying, updating,
versioning, locking, and others. It also supports analysis.

The API includes an extensive set of methods that return information about
the capabilities of the underlying data source. For example, one method

indicates whether the data source supports the creation of multiple schemas,
and another indicates whether the data source supports schema modification.

A core set of services for providers is also available in the API, such as provider
registration, schema management, filter and expression construction, and
XML serialization and deserialization.

The API uses an object-oriented model for the construction of feature schema.
A feature is a class, and its attributes, including its geometry, are a property
of the class. The instantiation of a feature class, a Feature Data Object (FDO),
can contain other FDOs.

Getting Started

For detailed information to help you install and get started using Feature Data
Objects (FDO), see The Essential FDO. It provides details about connecting to
and configuring providers, data store management (create/delete), user IDs
(create, grant permissions), and spatial context.

6 | Chapter 2 Introduction

/ | s oy | Business Applications \

GIS Applications 3 | R
I A—

o

Ee==

| g
7
o G

FDO APl (C++ and .Net)

Rasterfile format
Providers

Relational Database
Providers

Vector file format
Providers

Web Services
Providers
I

el

FDO Architecture and Providers

The following diagram shows the high-level overview architecture of the FDO
API and included FDO providers.

FDO Architecture and Providers | 7

FDO Architecture and Providers

FDO Packages

FDO is assembled in conceptual packages of similar functionality. This
conceptual packaging is reflected in the substructure of the FDO SDK “includes”
folder. For more information about the structure, see The Essential FDO.

FDO commands, provider-specific commands, and connections and capabilities
provide access to native data stores through each different FDO provider.
Schema management (through XML), client services, and filters and expressions
are provider-independent packages that tie into the FDO API. Each of these
are explained in more detail in subsequent sections.

8 | Chapter 2 Introduction

The FDO API consists of classes grouped within the following packages:

B Commands package. Contains a collection of classes that provide the
commands allowing the application to select and update features, define
new types of feature classes, lock features, and perform analysis on features.
Each Command object executes a specific type of command against the
underlying data store. In addition, FDO providers expose one or more
Command obijects.

B Connections/Capabilities. Contains a collection of classes that establish
and manage the connection to the underlying data store. Connection
objects implement the FdoIConnection interface. Capabilities API provides
the code for retrieving the various FDO provider capability categories, such
as connection or schema capabilities. You can use this this API to determine
the capabilities of a particular provider.

B Filters and Expression package. Contains a collection of classes that define
filters and expression in FDO, which are used to identify a subset of objects
of an FDO data store.

B Client Services package. Contains a collection of classes that define the
client services in FDO that, for example, enable support for dynamic
creation of connection objects given a provider name.

B Schema package and FDO XML. Contains a collection of classes that
provides a logical mechanism for specifying how to represent geospatial
features. The FDO feature schema is based somewhat on a subset of the
OpenGlIS and ISO feature models. FDO feature schemas can be written to
an XML file. The FdoFeatureSchema and FdoFeatureSchemaCollection
classes support the FdoXmlSerializable interface.

In addition, FDO is integrated with the Geometry API, which includes the
classes that support specific Autodesk applications and APIs, including FDO.

For more information about each of the FDO packages, see FDO API Reference
Help and subsequent chapters in this guide.

Provider API(s) complete the FDO API configuration. Each provider has a
separate API reference Help.

What Is a Provider?

A provider is a specific implementation of the FDO API. It is the software
component that provides access to data in a particular data store.

What Is a Provider? | 9

For this release, the providers that are included are as follows:

NOTE For more information, see the Open Source Geospatial Foundation website
at www.0OSGeo.org.

OsGeo FDO Provider for ArcSDE. Read/write access to feature data in an
ESRI ArcSDE-based data store (that is, with an underlying Oracle or SQL
Server database). Supports describing schema, and inserting, selecting,
updating, and deleting feature data in existing schemas; does not support
creating or deleting schemas.

OsGeo FDO Provider for MySQL. Read/write access to feature data in a
MySQL-based data store. Supports spatial data types and spatial query
operations. A custom API can gather information, transmit exceptions, list
data stores, and create connection objects. MySQL architecture supports
various storage engines, characteristics, and capabilities.

OsGeo FDO Provider for ODBC. Read/write access to feature data in an
ODBC-based data store. Supports XYZ feature objects and can define feature
classes for any relational database table with X, Y, and optionally Z
columns; does not support creating or deleting schema. Object locations
are stored in separate properties in the object definition.

OsGeo FDO Provider for SDF. Read-write access to feature data in an
SDF-based data store. Autodesk’s geospatial file format, SDF, supports
multiple features/attributes, provides high performance for large data sets
and interoperability with other Autodesk products, and spatial indexing.
The SDF provider a valid alternative to database storage. Note that this
release of the SDF provider supports version 3.0 of the SDF file format.

OsGeo FDO Provider for SHP. Read/write access to existing spatial and
attribute data in an ESRI SHP-based data store, which consists of separate
shape files for geometry, index, and attributes. Each SHP and its associated
DBF file is treated as a feature class with a single geometry property. This
is a valid alternative to database storage but does not support locking.

OsGeo FDO Provider for WFS. Read-only access to feature data in an OGC
WFS-based data store. Supports client/server environment and retrieves
geospatial data encoded in GML from one or more Web Feature Services
sites. Client/server communication is encoded in XML with the exception
of feature geometries, which are encoded in GML. Note that there is no
public API documentation for this provider; all functionality is accessible
via the base FDO APIL

10 | Chapter 2 Introduction

B OsGeo FDO Provider for WMS. Read-only access to feature data in an OGC
WDMS-based data store. Web Map Service (WMS) produces maps of spatially
referenced data dynamically from geographic information, which are
generally rendered in PNG, GIF, or JPEG, or as vector-based Scalable Vector
Graphics (SVG) or Web Computer Graphics Metafile (WebCGM) formats.

FDO supports retrieval and update of spatial and non-spatial GIS feature data
through a rich classification model that is based on OpenGIS and ISO
standards.

An overview of the relationships between providers, data sources, data stores,
and schemas is presented in the FDO Architecture and Providers graphic.

For more detailed information about the providers, see the appropriate
appendix in this document. Data sources and data stores are discussed in the
Establishing a Connection on page 27 chapter. Schema concepts are discussed
in the Schema Management on page 85 chapter.

Developing Applications

You will need to perform several major tasks in using the FDO API to develop
a custom application. Each of these tasks breaks down into a number of more
detailed coding issues.

The major development tasks are:

B Working with the Build Environment
B Establishing a Connection

B Schema Management

Data Maintenance

Creating Queries

Using Custom Commands (Provider-Specific)

These tasks are explored in detail in the chapters that follow.

Developing Applications | 11

FDO Concepts

Before you can work properly with the FDO API, you need to have a good understanding of
its basic, underlying concepts. This chapter defines the essential constructs and dynamics
that comprise the FDO API. The definitions of these constructs and dynamics are grouped
into two interdependent categories:

B Data Concepts. Definitions of the data constructs that comprise the FDO API

B Operational Concepts. Definitions of the operations that are used to manage and
manipulate the data.

Data Concepts

All concepts that are defined in this section relate to the data that FDO is
designed to manage and manipulate.

What Is a Feature?

A feature is an abstraction of a natural or man-made real world object. It is
related directly or indirectly to geographic locations. A spatial feature has one
or more geometric properties. For example, a road feature might be represented
by a line, and a hydrant might be represented by a point. A non-spatial feature
does not have geometry, but can be related to a spatial feature which does. For
example, a road feature may contain a sidewalk feature that is defined as not
containing a geometry.

What Is a Schema?

A schema is a logical description of the data types used to model real-world
objects. A schema is not the actual data instances (that is, not a particular road
or land parcel), rather it is metadata. A schema is a model of the types of data

that would be found in a data store. For example, a schema which models the
layout of city streets has a class called Road, and this class has a property called
Name. The definition of Road and its associated classes constitute the schema.

What Is a Schema Override?

A schema override comprises instructions to override the default schema
mappings. For example, an RDBMS-type FDO provider could map a feature
class to a table of the same name by default. A schema override might map
the class to a differently named table, for example, by mapping the "pole"
class to the "telco_pole" table.

What is a Schema Mapping

A Schema Mapping is a correspondence between a Schema Element and a
physical object in a data store. For example, OSGeo FDO Provider for MySQL
maps each Feature Class onto a table in the MySQL database where the data
store resides. The physical structure of data stores for each FDO provider can
vary greatly, so the types of Schema Mappings can also vary between providers.
Each provider defines a set of default schema mappings. For example, OSGeo
FDO Provider for MySQL maps a class to a table of the same name by default.
These defaults can be overridden by specifying Schema Overrides.

What Are Elements of a Schema?

A schema consists of a collection of schema elements. In the FDO API, schema
elements are related to one another by derivation and by aggregation. An
element of a schema defines a particular type of data, such as a feature class
or a property, or an association. For example, a feature class definition for a
road includes the class name (for example, Road), and the class properties (for
example, Name, NumberLanes, PavementType, and Geometry).

What Is a Class Type?

A class type is a specialization of the base FDO class definition
(FdoClassDefinition). It is used to represent the complex properties of spatial
and non-spatial features.

What is a Feature Class?

A feature class is a schema element that describes a type of real-world object.
It includes a class name and property definitions, including zero or more
geometric properties. It describes the type of data that would be included in
object instances of that type.

14 | Chapter 3 FDO Concepts

What Is a Property?

A property is a single attribute of a class and a class is defined by one or more
property definitions. For example, a Road feature class may have properties
called Name, NumberLanes, or Location. A property has a particular type,
which can be a simple type, such as a string or number, or a complex type
defined by a class, such as an Address type, which itself is defined by a set of
properties, such as StreetNumber, StreetName, or StreetType.

There are five kinds of properties: association properties, data properties,
geometric properties, object properties, and raster properties.

Individual properties are defined in the following sections.

What Is an Association Property?

The FdoAssociationPropertyDefinition class is used to model a peer-to-peer
relationship between two classes. This relationship is defined at schema
creation time and instantiated at object creation time. The association property
supports various cardinality settings, cascading locks, and differing delete
rules. An FDO filter can be based on association properties and
FdolIFeatureReader can handle associated objects through the GetObiject()
method.

What Is a Data Property?

A data property is a non-spatial property. An instance of a data property
contains a value whose type is either boolean, byte, date/time, decimal, single,
double, Int16, Int32, Int64, string, binary large object, or character large object.

What Is Dimensionality?

Dimensionality, and the concept of dimension, has two different meanings
in the discussion of geometry and geometric property.

The first is called shape dimensionality, and it is defined by the
FdoGeometricType enumeration. The four shapes are point (0 dimensions),
curve (1 dimensions), surface (2 dimensions), and solid (3 dimensions).

The other is called ordinate dimensionality, and it is defined by the
FdoDimensionality enumeration. There are four ordinate dimensions: XY,
XYZ, XYM, and XYZM. M stands for measure.

Data Concepts | 15

What Is a Geometric Property?

An instance of a geometric property contains an object that represents a
geometry value. The definition of the geometric property may restrict an
object to represent a geometry that always has the same shape, such as a point,
or it could allow different object instances to have different dimensions. For
example, one geometric property object could represent a point and another
could represent a line. Any combination of shapes is permissible in the
specification of the geometric types that a geometry property definition
permits. The default geometric property specifies that an object could represent
a geometry that is any one of the four shapes.

With respect to ordinate dimensionality, all instances of a geometric property
must have the same ordinate dimension. The default is XY.

Geometric property definitions have two attributes regarding ordinate

dimensionality: HasElevation for Z and HasMeasure for M.

What is a Geometry?

A geometry is represented using geometric constructs either defined as lists
of one or more XY or XYZ points or defined parametrically, for example, as
a circular arc. While geometry typically is two- or three-dimensional, it may
also contain the measurement dimension (M) to provide the basis for dynamic
segments.

The geometry types are denoted by the FdoGeometryType enumeration and
describe the following:

B Point

B LineString (one or more connected line segments, defined by positions at
the vertices)

B CurveString (a collection of connected circular arc segments and linear
segments)

B Polygon (a surface bound by one outer ring and zero or more interior rings;
the rings are closed, connected line segments, defined by positions at the
vertices)

B CurvePolygon (a surface bound by one outer ring and zero or more interior
rings; the rings are closed, connected curve segments)

B MultiPoint (multiple points, which may be disjoint)

B MultiLineString (multiple LineStrings, which may be disjoint)

16 | Chapter 3 FDO Concepts

MultiCurveString (multiple CurveStrings, which may be disjoint)
MultiPolygon (multiple Polygons, which may be disjoint)

MultiCurvePolygon (multiple CurvePolygons, which may be disjoint)

MultiGeometry (a heterogenous collection of geometries, which may be
disjoint)

Most geometry types are defined using either curve segments or a series of
connected line segments. Curve segments are used where non-linear curves
may appear. The following curve segment types are supported:

B CircularArcSegment (circular arc defined by three positions on the arc)

B LineStringSegment (a series of connected line segments, defined by
positions are the vertices)

There are currently no geometries of type “solid” (3D shape dimensionality)
supported.

The FdoIConnection::GetGeometryCapabilities() method can be used to query
which geometry types and ordinate dimensionalities are supported by a
particular provider.

What Is an Object Property?

An object property is a complex property type that can be used within a class,
and an object property, itself, is defined by a class definition. For example,
the Address type example described previously in the Property definition. An
object property may define a single instance for each class object instance (for
example, an address property of a land parcel), or may represent a list of
instances of that class type per instance of the owning class (for example,
inspection records as a complex property of an electrical device feature class).

What is a Raster Property?

A raster property defines the information needed to process a raster image,
for example, the number of bits of information per pixel, the size in pixels of
the X dimension, and the size in pixels of the Y dimension, needed to process
a raster image.

Data Concepts | 17

What Is a Spatial Context?

A spatial context describes the general metadata or parameters within which
geometry for a collection of features resides. In particular, the spatial context
includes the definition of the coordinate system, spheroid parameters, units,
spatial extents, and so on for a collection of geometries owned by features.

Spatial context can be described as the “coordinate system plus identity.” Any
geometries that are to be spatially related must be in a common spatial context.

The identity component is required in order to support separate workspaces,
such as schematic diagrams, which are non-georeferenced. Also, it supports
georeferenced cases. For example, two users might create drawings using some
default spatial parameters (for example, rectangular and 10,000x10,000),
although each drawing had nothing to do with the other. If the drawings were
put into a common database, the users could preserve not only the spatial
parameters, but also the container aspect of their data, using spatial context.

For more information about spatial context, see Spatial Context on page 161.

What is a Data Store?

A data store is a repository of an integrated set of objects. The objects in a data
store are modeled either by classes or feature classes defined within one or
more schemas. For example, a data store may contain data for both a LandUse
schema and a TelcoOutsidePlant schema. Some data stores can represent data
in only one schema, while other data stores can represent data in many
schemas (for example, RDBMS-based data stores, such as MySQL).

Operational Concepts

The concepts that are defined in this section relate to the FDO operations used
to manage and manipulate data.

What Is a Command?

In FDO, the application uses a command to select and update features, define
new types of feature classes, lock features, version features, and perform some
analysis of features. Each Command object executes a specific type of command
against the underlying data store. Interfaces define the semantics of each
command, allowing them to be well-defined and strongly typed. Because FDO
uses a standard set of commands, providers can extend existing commands
and add new commands, specific to that provider. Feature commands execute

18 | Chapter 3 FDO Concepts

against a particular connection and may execute within the scope of a
transaction.

An FDO command is a particular FDO interface that is used by the application
to invoke an operation against a data store. A command may retrieve data

from a data store (for example, a Select command), may update data in a data
store (for example, an Update or Delete command), may perform some analysis
(for example, an Activate Spatial Context command), or may cause some other
change in a data store or session (for example, a Begin Transaction command).

What Is an Expression?

An expression is a construct that an application can use to build up a filter.
An expression is a clause of a filter or larger expression. For example, “Lanes
>=4 and PavementType = 'Asphalt'” takes two expressions and combines them
to create a filter.

For more information about using expressions with FDO, see Filter and
Expression Languages on page 139.

What Is a Filter?

A filter is a construct that an application specifies to an FDO provider to
identify a subset of objects of an FDO data store. For example, a filter may be
used to identify all Road type features that have 2 lanes and that are within
200 metres of a particular location. Many FDO commands use filter parameters
to specify the objects to which the command applies. For example, a Select
command uses a filter to identify the objects that the application wants to
retrieve. Similarly, a Delete command uses a filter to identify the objects that
the application wants to delete from the data store.

For more information about using filters with FDO, see Filter and Expression
Languages on page 139.

What Is Locking?

A user can use locking to gain update control of an object in the data store to
the exclusion of other users. There are two general types of locks—transaction
locks and persistent locks. Transaction locks are temporary and endure only
for the duration of the transaction (see What Is a Transaction? on page 20).

Persistent locks applied to objects by a user remain with the object until either
that user removes those locks or the locks are removed by another user with
the appropriate authority.

Operational Concepts | 19

What Is a Transaction?

A transaction changes the data store in some way. The way these changes
affect the data store is determined by the transaction’s properties. For example,
the Atomic property specifies that either all changes happen or non happen.
In transaction processing the data store treats a series of commands as a single
atomic unit of change to that data store. Either all changes generated by the
commands are successful or the whole set is cancelled. A transaction is a single
atomic unit of changes to a data store. The application terminates a transaction
with either a “commit,” which applies the set of changes, or a “rollback,”
which cancels the set of changes. Further, the data store may automatically
roll back a transaction if it detects a severe error in any of the commands
within the transaction. A transaction has the following properties:

B Atomic. Either all changes generated by the commands within a transaction
happen or none happen.

B Consistent. The transaction leaves the data store in a consistent state
regarding any constraints or other data integrity rules.

B Isolated. Changes being made within a transaction by one user are not
visible to other users until after that transaction is committed.

B Durable. After a transaction is completed successfully, the changes are
persistent in the data store on disk and cannot be lost if the program or
processor fails.

What Is a Long Transaction?

A long transaction (LT) is an administration unit used to group conditional
changes to objects. Depending on the situation, such a unit might contain
conditional changes to one or to many objects. Long transactions are used to
modify as-built data in the database without permanently changing the as-built
data. Long transactions can be used to apply revisions or alternates to an
object.

What Is a Root Long Transaction?
A root long transaction is a long transaction that represents permanent data.

Any long transaction has a root long transaction as an ancestor in its long
transaction dependency graph.

20 | Chapter 3 FDO Concepts

Development Practices

This chapter explains several practices to follow when working with the FDO API and provides
examples of how to follow these practices.

Memory Management

Some FDO functions (for example, the Create methods) allocate memory when
they are called. This memory needs to be freed to prevent memory leaks. All
destructors on FDO classes are protected, so you must call a Release() function
to destroy them (thus freeing their allocated memory). Each class inherits from
the FdoIDisposable class, which defines the Release() method and the AddRef()
method.

In addition, these classes are reference counted, and the count is increased (by
AddRef()) when you retrieve them through a Get function. After finishing with
the object, you need to release it (just as with COM objects). The object is
destroyed only when the reference count hits 0. Two macros are defined to help
in the use of the Release() and AddRef() methods.

FDO_SAFE_RELEASE (*ptr)

If the “*ptr” argument is not null, FDO_SAFE_RELEASE calls the release() method
of the object pointed to by the “*ptr” argument and then sets the local pointer
to the object to NULL. The macro definition is #define FDO SAFE RELEASE (x)
{if (x) (x)->Release(); (x) = NULL;}.

FdoFeatureClass* pBase = myClass->GetBaseClass();

// Must release reference added by GetBaseClass when done.
FDO_SAFE RELEASE (pBase) ;

21

FDO_SAFE_ADDREF (*ptr)

If the “*ptr” argument is not null, FDO_SAFE_ADDREEF calls the AddRef()
method of the object pointed to by the “*ptr” argument. The macro definition
is #define FDO SAFE ADDREF (x) ((x != NULL) ? (x)->AddRef(), (x):
(NULL)).

B return FDO_SAFE ADDREF (value)returns NULL if value equals NULL or
increments the reference count of the object that value points to and
returns value.

M n list[index] = FDO_ SAFE ADDREF (value) assigns NULL to the array
entry if value is NULL or increments the reference count of the object that
value points to and assigns value to the array entry.

FdoPtr

An rdoptr smart pointer is provided to help manage memory. You wrap an
FDO object in a Fdoptr. The requirement is that the object’s type must inherit
from FdoIDisposable. The object is then released automatically when the
FdoPtr goes out of scope. The following code illustrates how to use FdopPtr:

FdoPtr<FdoFeatureClass> pBase = myClass->GetBaseClass () ;
// No need to call FDO_SAFE_RELEASE.

// Before it is destroyed, pBase calls Release() on the FdoFeature

Class object

NOTE If, for some reason, you wanted to use FDO_SAFE_RELEASE on an FdoPtr,
you would have to use an FdoPtr method to get a pointer to the object that FdoPtr
wraps and pass that pointer to FDO_SAFE_RELEASE.

You can use Fdoptr for your own classes by inheriting from the abstract class
FdoIDisposable and providing an implementation for the pispose () method
(typically delete this;).

FdoPtr Typedefs

Typedefs are provided that define identifiers representing Fdo classes wrapped
byFdoPtr. An example is typedef FdoPtr<FdoClass> FdoClassP.

22 | Chapter 4 Development Practices

Collections

You can use FDO collection template classes to store your own objects. The
requirements for your collection class and the class used to instantiate the
template are the same as those for wrapping a class in a Fdoptr.

Exception Handling

In the FDO API, FdoCommandException class is the exception type thrown
from classes in the Commands package, and FdoConnectionException class
is the exception type thrown from classes in the Connections package. Both
of these exception types derive from a language-level exception class that is
environment-specific.

All exceptions are derived from the FdoException class. To catch and process
specific exception types, nest catch statements as in the following example:

try {
. code

catch (FdoCommandException *ex) {
. process message
}
catch (FdoException *ex) {
. process message

}

In some cases, underneath an FDO command, the FDO level throws an
FdoException. The FDO command then traps the FdoException and wraps it
in an FdoCommandException (or FdoSchemaException for a schema
command). In this case, several messages are returned by one exception. The
following example shows how to process multiple messages from one
exception:

catch (FdoSchemaException* ex) {
// Loop through all the schema messages
FdoException* currE = ex;
while (currE) {
CW2A msg (currE->GetExceptionMessage());
acutPrintf ("FdoConnectionException: %$s\n", msg);

currE = currE->GetCause () ;

Collections | 23

An application function may need to catch and then re-throw exceptions in
order to clean up memory. However, the need to do this can be eliminated
by using FdoPtr. The following example cleans up memory on error:

FdoFeatureClass* pBase = NULL;
try {
pBase = myClass->GetBaseClass () ;

}

catch (...) {
FDO_SAFE RELEASE (pBase) ;
throw;

}
// Must release reference added by GetBaseClass when done.
FDO_SAFE RELEASE (pBase) ;

The catch and rethrow is unnecessary when FdoPtr is used:

FdoPtr<FdoFeatureClass> pBase = myClass->GetBaseClass();

Exception Messages

Exception messages are localized. On Windows the localized strings are in
resource-only DLLs, and on Linux they are in catalogs. The message DLLs are
in the bin folder; the DLL name contains Message or Msg. The catalog files
are in the /usr/local/fdo-3.2.0/nls directory; the names of these files ends in .cat.
NLS stands for National Language Support.

On Linux set the NLSPATH environment variable so that the runtime code
can locate the message catalogs. For example, export
NLSPATH=/usr/local/fdo-3.2.0/nls/%N.

On Windows you do not have do anything special to enable the runtime code
to locate the message DLLs.

The contents of the exception message files are indexed. When you call one
of the FdoException::NLSGetMessage methods declared in Exception.h, you
provide a message number argument. You may also provide a default message
string argument. In the event that the exception message resource file cannot
be found, the default message is subsituted instead. If the default message
string is not provided and the resource file cannot be found, the message
number is used as the exception message. Not finding the resource file can
only happend on Linux and only if the NLSPATH envrionment variable is not
set.

24 | Chapter 4 Development Practices

The following two examples, when called on Linux with the NLSPATH
environment variable not set, show the use of the default message and the
message number in the exception message.

The following is an example of using the default string: throw
FdoSchemaException: :Create (N1sMsgGetl (FDORDBMS 333, "Class '%1Sls'not
found", value->GetText())):;

The following is an example of not setting the default string and using the
message number instead: FdoSchemaException* pNewException =
FdoSchemaException: :Create (

FdoSmError: :NLSGetMessage (FDO_NLSID(FDOSM 221),
pFeatSchema->GetName ()), pException);.

Managing FdoPtr Behaviors

The topics in this section describe several ways that you can manager FdoPtr
behavior. For more information about managing FdoPtr behavior, see the
related topics “FdoPtr <T> Class Template Reference” and “FdolIDisposable
Class Reference” in the FDO Reference Help and The Essential FDO.

Chain Calls

Do not chain calls. If you do, returned pointers will not be released. For
example, given an FdoClassDefinition* pclassDef:

psz = pclassDef ->GetProperties()->GetItem(0)->GetName ())

The above code would result in two memory leaks. Instead use:
FdoPropertyDefinitionCollection* pprops = pclassDef -> GetProper
ties () ;

FdoPropertyDefinition* ppropDef = pprops->GetItem(0) ;
psz = propDef->GetName () ;

ppropDef->Release () ;

pprops->Release () ;
or (with FdoPtr):

FdoPtr<FdoPropertyDefinitionCollection> pprops = pclassDef-> Get
Properties () ;

FdoPtr<FdoPropertyDefinition> ppropDef = pprops-> GetItem(O0) ;
psz = propDef->GetName () ;

or (also with FdoPtr):

Managing FdoPtr Behaviors | 25

psz = FdoPtr <FdoPropertyDefinition> (FdoPtr <FdoPropertyDefini
tionCollection> (pclassDef->GetProperties ())-> GetItem(0))->Get
Name () ;

Assigning Return Pointer of an FDO Function Call to a Non-Smart
Pointer

If you are assigning the return pointer of an FDO function call to a non-smart
pointer, then you should assign that pointer to a FdoPtr. For example:

FdoLineString* P = gf.CreatelLineString(...);
FdoPtr <FdoLineString> p2 = FDO SAFE ADDREF (p);

26 | Chapter 4 Development Practices

Establishing a
Connection

This chapter explains how to establish a connection to an FDO provider and provides a
connection example.

Connection Semantics

Data Sources and Data Stores

The FDO API uses connection semantics to implement access to feature schema
data. The term data store is used to refer to a collection of zero or more objects,
which instantiate class definitions belonging to one or more FDO feature schema.
The connection is to a data store because that is where data objects are stored.
The underlying data source technologies used to hold data stores can be
relational databases, such as, a MySQL database, or a file-based solution, such
as an SDF file.

The mapping of a data store to data source technology can be one-to-one or
many-to-one. For example, it is

B One-to-one when the connection is made by way of the OSGeo FDO Provider
for ArcSDE and the ArcSDE server is using an Oracle database.

B Many-to-one when the data source is a MySQL database and the connection
is made by way of the OSGeo FDO Provider for MySQL (in this case, the data
store is like a container within a container).

When many-to-one mapping is possible, a connection can be made in one or
two steps. For more information, see Establishing a Connection on page 29 and
The Essential FDO.

27

The underlying data source technologies differ in the connection parameters
used for connecting to a particular provider. The values for these parameters
are generated during the installation and configuration of the container
technologies. For more information about these values and the process of
installing and configuring the associated data source technologies, see the
appropriate appendix in this document and The Essential FDO.

Providers

You connect to a data store by way of a provider.

The FDO API contains a registry interface that you can use to register or
deregister a provider. See the class FdoProviderRegistry in
Inc/Fdo/ClientServices/ProviderRegistry.h.

The providers are registered during the initialization of the FDO SDK. In order
to connect to a provider, you will need the name of the provider in a particular
format: <Company/Foundation/Originator>.<Provider>.<Version>. The
<Company/Foundation/Originator> and <Provider> values are invariable. For
specific values, see The Essential FDO.

In order to connect, you will need the full name including the <Version>
value. You can retrieve the full name from the registry and display the set of
provider names in a connection menu list. If, for whatever reason, you
deregister a provider, save the registry information for that provider in case
you want to reregister it again. The provider object returned by the registry
has a Set() method to allow you to change values. However, the only value
you can safely change is the display name. Sample code for using the provider
registry is located in Establishing a Connection on page 29.

The registry contains the following information about a provider:

B Name. The unique name of the feature provider. This name should be of
the form <Company/Foundation/Originator>.<Provider>.<Version>, for
example, Autodesk.Oracle.3.0 or OSGeo.MySQL.3.0.

B DisplayName. A user-friendly display name of the feature provider. The
initial values of this property for the pre-registered providers are “Autodesk
FDO Provider for Oracle”, “OSGeo FDO Provider for SDF”, etc., or the
equivalent in the language of the country where the application is being
used.

B Description. A brief description of the feature provider. For example, the
the OsGeo FDO Provider for SDF description is “Read/write access to
Autodesk's spatial database format, a file-based personal geodatabase that
supports multiple features/attributes, spatial indexing, and file-locking.”

28 | Chapter 5 Establishing a Connection

B Version. The version of the feature provider. The version number string
has the form <VersionMajor>.<VersionMinor>.<BuildMajor>.<BuildMinor>,
for example, 3.0.0.0.

B FDOVersion. The version of the feature data objects specification to which
the feature provider conforms. The version number string has the form
<VersionMajor>.<VersionMinor>.<BuildMajor>.<BuildMinor>, for example,
3.0.1.0.

B libraryPath. The FULL library path including the library name of the
provider, for example, <FDO SDK Install Location>/bin/FdoRdbms.dll.

B isManaged. A flag indicating whether the provider is a managed or
unmanaged .NET provider.

Establishing a Connection

As mentioned in a previous section, Connection Semantics on page 27, the
FDO API uses a provider to connect to a data store and its underlying data
source technology. These data source technologies must be installed and
configured. Certain values generated during data source installation and
configuration are used as arguments during the connection process. Because
the FDO API does not provide any methods to automate the collection and
presentation of these configuration values, either the application developer
must request the user to input these configuration values during the
connection process, or the application developer can provide an application
configuration interface, which would populate the application with the
container configuration values and thus allow the user to choose them from
lists.

NOTE For more information about connecting, see The Essential FDO.

A connection can be made in either one or two steps:

B One-step connection. If the user sets the required connection properties
and calls the connection object’s Open() method once, the returned state
is FdoConnectionState_Open, no additional information is needed.

B Two-step connection. If the user sets the required connection properties
and calls the connection object’s Open() method, the returned state is
FdoConnectionState_Pending, additional information is needed to complete
the connection. In this case, the first call to Open() has resulted in the
retrieval of a list of values for a property that becomes a required property

Establishing a Connection | 29

for the second call to the Open() method. After the user has selected one
of the values in the list, the second call to Open() should result in
FdoConnectionState_Open.

Connecting to a data store by way of the MySQL or the ArcSDE provider, for
example, can be done in either one or two steps. In the first step, the data
store parameter is not required. If the user does not give the data store
parameter a value, the FDO will retrieve the list of data store values from the
data source so that the user can choose from them during the second step.
Otherwise the user can give the data store a value in the first step, and
assuming that the value is valid, the connection will be completed in one
step.

For the purpose of this example, let’s assume that the user has installed MySQL
on his local machine. During the installation he was prompted to assign a
password to the system administrator account whose name is ‘root’. He set
the password to ‘test’.

The following steps are preliminary to establishing a connection:

1 Get the list of providers.

FdoPtr<FdoProviderRegistry> registry = (FdoProviderRegistry
*)FdoFeatureAccessManager: :GetProviderRegistry () ;

FdoProviderCollection * providers = registry->GetProviders();

2 Get the display names for all of the providers in the registry. An example
of a display name might be OSGeo FDO Provider for MySQL.

FdoStringP displayName;

FdoStringP internalName;

FdoPtr<FdoProvider> provider;

int count = providers->GetCount () ;

for(int 1 = 0; i < count; i++) {
provider = providers->GetItem(i);
internalName = provider->GetName () ;
displayName = provider->GetDisplayName () ;
// add displayName to your list

}

3 Use the display names to create a menu list, from which the user will
select from when making a connection.

After the user initiates a provider display name from the connection menu,
do the following:

30 | Chapter 5 Establishing a Connection

Loop through the providers in the registry until you match the display
name selected by the user from the connection menu with a provider
display name in the registry and retrieve the internal name for that
provider. An example of an internal could be OSGeo.MySQL.3.2.

FdoStringP internalName = provider->GetName () ;

Get an instance of the connection manager.

FdoPtr<FdoConnectionManager> connectMgr = (FdoConnectionManager

*)FdoFeatureAccessManager: :GetConnectionManager () ;

Call the manager’s CreateConnection() method using the provider internal
name as an argument to obtain a connection object.

FdoPtr<FdoIConnection> fdoConnection = connectMgr->CreateConnec
tion (L”0sGeo.MySQL.3.2") ;

Obtain a connection info object by calling the connection object’s
GetConnectionInfo() method.

FdoPtr<FdoIConnectionInfo> info = fdoConnection->GetConnection
Info();

Obtain a connection property dictionary object by calling the connection
info object’s GetConnection Properties() method and use this dictionary
to construct a dialog box requesting connection information from the
user.

FdoPtr<FdoIConnectionPropertyDictionary> ConnDict = info->GetCon
nectionProperties();

Get a list of connection property names from the dictionary and use this
list to get information about the property. The following code loops
through the dictionary getting all of the possible information.

NOTE An attempt to get the values of an enumerable property is made only
if the property is required.

FdoInt32 count = 0;
FdoString ** names = NULL;
FdoStringP name;
FdoStringP localname;
FdoStringP wval;

FdoStringP defaultval;
bool isRequired = false;
bool isProtected = false;
bool isFilename = false;

bool isFilepath = false;

31

Establishing a Connection

bool isDatastorename = false;
bool isEnumerable = false;
FdoInt32 enumCount = 0;
FdoString ** enumNames = NULL;
FdoStringP enumName;

names = ConnDict->GetPropertyNames (count) ;
for(int i = 0; 1 < count; i++) {
name = names[i];

val = dict->GetProperty (name) ;
defaultvVal = dict->GetPropertyDefault (name) ;
localname = dict->GetLocalizedName (name) ;
isRequired = dict->IsPropertyRequired (name) ;
isProtected = dict->IsPropertyProtected (name) ;
isFilename = dict->IsPropertyFileName (name) ;
isFilepath = dict->IsPropertyFilePath (name) ;
isDatastorename = dict->IsPropertyDatastoreName (name) ;
isEnumerable = dict->IsPropertyEnumerable (name) ;
if (isEnumerable) {
if (isRequired) {
enumNames = dict->EnumeratePropertyValues (name, enumCount);
for(int j = 0; j < enumCount; Jj++) {

enumName = enumNames[]];

}

7 Use the GetLocalizedName method to obtain the name of the property
to present to the user. Calls to dictionary methods need the value of the
internal name in the string array returned by GetPropertyNames(). So
when the user selects the localized name in the menu, the program must
map the localized name to the internal name.

8 Use the IsPropertyRequired method to determine whether to mark the
line as either required or optional; the dialog box handler should not
permit the user to click OK in the dialog box unless a required field has
a value.

9 Use the IsPropertyProtected method to determine whether the dialog
box handler should process the field value as protected data, for example,
a password.

10 Use the IsPropertyEnumerable and IsRequired methods to determine
whether to call the EnumeratePropertyValues method to get a list of valid
values.

32 | Chapter 5 Establishing a Connection

NOTE Call the EnumeratePropertyValues method only if both methods return
true. Otherwise be prepared to catch an exception if there is no pending
connection. The assumption is that a connection exists and the program is
retrieving values from the data store.

As shown in the code lines above, the EnumeratePropertyValues method takes
a property name and an updates integer argument and returns a string array.
The updates integer will say how many values are in the returned array. Present
the list of choices to the user.

If the property is not enumerable, present the values returned by either the
GetProperty or GetPropertyDefault methods to the user.

Now that the user has seen the set of properties in the dictionary, s/he can
set the required properties. A property is set by calling the dictionary’s
SetProperty method. The MySQL connection property names are Username,
Password, Service, and DataStore. The dictionary tells us that Username,
Password, and Service are required properties and that DataStore is not required.
Let’s connect to the MySQL as root.

ConnDict->SetProperty (L”Username”, L”root”);
ConnDict->SetProperty (L”Password”, L”test”);
ConnDict->SetProperty(L”Service”, L”localhost”);

NOTE fdoconnection->GetConnectionString () returns

Username=root; Password=test;Service=localhost;.
fdoconnection—>SetConnectionString (L”"Username=root ; Password=test; Service=localhost;”) ;
would set the connection properties to the same values as the three calls above
to the connection dictionary’s SetProperty() method.

Open the connection.
FdoConnectionState state = fdoConnection->Open() ;

The value of state is FdoConnectionState_Pending. An examination of the
connection dictionary will reveal that the DataStore property is now required.

When the user checks the command capabilities, he discovers that he can
create a data store.

Establishing a Connection | 33

FdoPtr<FdoICommandCapabilities> commandCapabilities = fdoConnec
tion->GetCommandCapabilities () ;
bool bSupportsCreateDatastore = false;
FdoInt32 numCommands;
FdoIn32 * commands = commandCapabilities->GetCommands (numCommands) ;
for(int i = 0; 1 < numCommands; i++) {

switch (commands[i]) {

case FdoCommandType CreateDataStore : bSupportsCreateDatastore

= true;

}
}

He can use the pending connection to MySQL to create the datastore. Use the
connection object to create the FdoICreateDataStore command object. Use
the command object to create the FdoIDataStorePropertyDictionary object
and find out from this object what properties you must define. Use the
dictionary object to set the required properties and then execute the command
to create the ‘fdo_user’ data store. The only required property is DataStore.

NOTE The FdolDataPropertyDictionary and the FdolConnectionPropertyDictionary
classes are both derived from FdolPropertyDictionary. The code used above to
access the FdolConnectionPropertyDictionary object works for the
FdolDataPropertyDictionary.

FdoPtr<FdoICreateDataStore> createDataStoreCmd = dynam
ic_cast<FdoICreateDataStore *> (fdoConnection->CreateCommand (Fdo
CommandType CreateDataStore));
FdoPtr<FdoIDataStorePropertyDictionary> createDsDict = createData
StoreCmd->GetDataStoreProperties();

createDsDict->SetProperty (L”DataStore”, L”fdo user”);

createDataStoreCmd->Execute () ;

Now use the connection property dictionary to set the DataStore property to
‘fdo_user’ and call the Open() method on the connection object. This method
should return FdoConnectionState_Open.

34 | Chapter 5 Establishing a Connection

FDO Capabilities

FDO Capabilities

Introduction

The FDO capabilities are statically defined. They are accessed through a
connection object in the closed state. The following code illustrates how to get
a connection object in the closed state.

If you are using C#, you will find the capability definitions in the
0OSGeo.FDO.Connections.Capabilities namespace. If you are using C++, you
will find the headers in the Fdo/Connections/Capabilties directory.

In C# you access them using the OSGeo.FDO.Connections.IConnection object.
In C++ you access them using the IConnection object whose header is in the
Fdo/Connections directory.

The information in the capabilities tables reflects the state of the FDO provider
capabilities as of the commercial release of Map 3D 2009.

For the most part FDO defines capabilities in three ways: booleans, enumerations
or integers representing enumerated values, and collections. One schema
capability is defined as a string and two other schema capabilities as integers.
For example, the Command capability, SupportsParameters, is a boolean, and
the Command capability, Commands, is a set of integers whose meaning is
defined by the C# CommandType enumeration and the C++ FdoCommandType
enumeration. Function capabilities are defined as collections of function
signatures. The C# type is
0SGeo.FDO.Connections.Capabilities.ReadOnlySignatureDefinitionCollection.
The C++ type is FdoReadOnlySignatureDefinitionCollection. The latter is

35

defined in Fdo/Connections/Capabilities/SignatureDefinition.h. Each boolean,
enumeration and signature value is shown in the tables.

In general, where a number of capabilities are supported by the same set of
providers, the capabilities are aggregated into one line in the table. This rule
is modified in the function category tables in the Expression section.

In some cases, for example the CLIP raster function, there is only one signature.
At the other end of the spectrum is the Concat string function, which has
almost 100 signatures. The same set of providers supports an enormous number
of functions and so the rule for presenting aggregations of capabilities had to
be modfied for functions. The rule for functions is to present all of the
signatures for one function on a line in the table. A handful of functions had
so many signatures that their presentation had to be split over two lines.

Provider Type

A provider can be one of four types: Database Server, File, Web Server, or
Unknown. The type information is available from the connection object in
the closed state. The “Unknown” type indicates that the provider can connect
to more than one type of data store technology. The ODBC and OGR providers
can connect either to a file-based or RDBMS-based data store technology,
which is not known until the connection is in the open state.

In C# the ProviderDatastoreType enumeration is in the
0OSGeo.FDO.Connections namespace. The ProviderDatastoreType property is
accessible through the OSGeo.FDO.Connections.IConnection object
(connection.ConnectionInfo.ProviderDatastoreType).

In C++ the FdoProviderDatastoreType enumeration is defined in the
<Fdo/Connections/ProviderDatastoreType.h> header file. The
FdoProviderDatastoreType value is accessible through the IConnection object

(connection->GetConnectionInfo () ->GetProviderDatastoreType ()).
Provider Type

OSGeo.ArcSDE.3.3 DatabaseServer
0OSGeo.KingOracle.3.3 DatabaseServer

0SGeo.MySQL.3.3 DatabaseServer

36 | Chapter 6 FDO Capabilities

Provider Type

0OSGeo.PostGlIS.3.3 DatabaseServer
0OSGeo.SQLServerSpatial.3.3 DatabaseServer
0OSGeo.Gdal.3.3 File
0SGeo.SDF.3.3 File
0SGeo.SHP.3.3 File
0SGeo.WFS.3.3 WebServer
0SGeo.WMS.3.3 WebServer
0SGeo0.0ODBC.3.3 Unknown
0SGeo0.0OGR.3.3 Unknown

NOTE A provider name with OSGeo at the beginning indicates that the provider
is available as open source from http://fdo.osgeo.org.

Command

In C# you access the
0SGeo.FDO.Connections.Capabilities.ICommandCapabilities ushlgthe
IConnection object (connection.CommandCapabilities).

In C++ you access the FdoICommandCapabilities using the IConnection object
(connection->GetCommandCapabilities ()).

Command Description

AcquireLock Locks feature instances of a given class that match the
specified criteria.

Command | 37

http://fdo.osgeo.org

Command

Description

ActivateLongTransaction

Activates a long transaction so that features can be ver-
sioned.

ActivateSpatialContext

Activates a specified spatial context.

ApplySchema

Creates or updates a feature schema within the data
store. Optionally, a provider-specificmapping of feature
schema elements to physical storage can be specified.

CommitLongTransaction

Commits all of the data within a leaf long transaction
(one that does not have descendent long transactions)
to the parent long transaction and removes the long
transaction. Requires access, commit and remove priv-
ileges to the long transaction and the access privilege
to the parent long transaction.

CreateDataStore

Creates anew provider specific datastore.

CreateLongTransaction

Creates a long transaction as a child of the currently
active long transaction.

CreateSpatialContext

Creates a new spatial context. Input to the command
includes the name, description, coordinate system, ex-
tent type, and extent for the new context.

DeactivateLongTransaction

Deactivates the active long transaction and automatically
activates the root long transaction. If the root long
transaction is the active one, the deactivation has no
effect.

Delete

Deletes the instances of a given class that match the
specified criteria. The instances can be at global scope
or contained within an object collection.

DescribeSchema

Describe a single schema or all schemas available fromthe
connection.

38 | Chapter 6 FDO Capabilities

Command

Description

DescribeSchemaMapping

Describes the logical to physical schema mappings for
one or all feature schemas available from the connection.

DestroyDataStore

Remove a data store.

DestroySchema

Destroys a schema definition, including all class defini-
tions, relationship definitions, and instance data within
it. If elements in other schemas referto the schema to
be destroyed, execution will fail.

DestroySpatialContext

Destroys an existing spatial context, which destroys all
data stored in that context.

GetLockedObjects

Gets a list of all objects that are currently locked by a
particular user.

GetLockInfo

Gets lock information for the feature instances of a given
class that match the specified filter.

GetLockOwners

Gets a list of all lock owners.

GetlongTransactions

Gets one specific long transaction or all available long
transactions.

GetMeasureUnits

Enumerates the existing measurement units.

GetSpatialContexts

Gets all spatial contexts or just the active one.

Insert inserts a new instance of a given class. The instance can
be at global scope or contained within an object collec-
tion.

ListDataStores Gets a list of datastores at a particular server.

Oracle.CreateSpatiallndex

Create a spatial index for the specified spatial context.

Command | 39

Command

Description

Oracle.DestroySpatiallndex

Drop the specified spatial index.

Oracle.GetSpatiallndexes

Enumerate the existing spatial indexes.

ReleaseLock

Releases locks from feature instances of a given class that
match the specified criteria.

RollbackLongTransaction

Removes all of the data within a long transaction and
removes the long transaction as well. Requires access,
commit and remove privileges to the long transaction
and the access privilege to the parent long transaction.

SDF.CreateSDFFile

creates a new SDF+ file with a specified location and file
name and a given spatial coordinate system. This com-
mand has been superceded by the CreateDataStore
command.

SDF.Extended_Select

Supports the selection and ordering of feature instances
of a given class according to the specified criteria. The
results of the select are written to an SDF file.

Select

Queries for features of a given class that match the spe-
cified criteria.

SelectAggregates

Queries for features of a given class that match the spe-
cified criteria. The criteria can specify that feature values
from multiple instances be aggregated, be distinct, or
be grouped.

SQLCommand

Supports the execution of a SQL statement against an
underlying RDBMS. Two execute methods are provided
to distinguish between statements that return table data
versus those that execute non query type operations.

Update

Modifies instances of a given class that match the spe-
cified criteria. The instance can be at global scope or
contained within an object collection.

40 | Chapter 6 FDO Capabilities

Command

Description

WMS.GetlmageFormats

Gets the image formats supported by the connection.

WMS.GetFeatureClassStyles

Gets the layer styles available for the specified feature
class.

WMS.FeatureClassCRS-
Names

Gets the CRS names available for the specified feature
class.

Boolean Capability

Description

SupportsSelectDistinct

Indicates whether or not a provider sup-
ports the use of distinct in SelectAggreg-
ates commands.

SupportsSelectExpressions

Indicates whether or not a provider sup-
ports the use of expressions for properties
in Select and SelectAggregate commands.

SupportsSelectFunctions

Indicates whether or not a provider sup-
ports the use of functions in Select and
SelectAggregates command. Only aggreg-
ate functions can be used in the SelectAg-
gregates command.

SupportsSelectGrouping

Indicates whether or not a provider sup-
ports the use of grouping criteria in the
SelectAggregates command.

SupportsSelectOrdering

Indicates whether or not a provider sup-
ports ordering in the Select and SelectAg-
gregates command.

Command | 41

Boolean Capability Description

SupportsParameters Indicates whether or not a provider sup-
ports parameter substitution.

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05SGeo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=05SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=0SGeo.WMS; C=0SGeo.OGR

Capability 123 456789 AB

Select, DescribeSchema, GetSpatialContexts + + 4+ + + + 4+ + + 4+ o+

SelectAggregates + 4+ o+ -+ o+ o+ o+ o+ 4+

SupportsSelectFunctions + + 4+ + 4+ - o+ o+ -+ o+

SupportsSelectDistinct, Insert, Update, Delete + 4+ + + + - + + - - o+

SupportsSelectExpressions S+ 4+ 4+ o+ -+ o+ o+ -+

CreateSpatialContext + + 4+ - o+ -+ o+ - - -
DescribeSchemaMapping - -+ -+ o+ -+ -+ o+
SQLCommand T
ApplySchema -+ o+ o+ o+ -+ o+ - - -
CreateDataStore -+ 4+ + o+ -+ - - - .
SupportsSelectOrdering -+ 4+ 4+ 4+ - - - - L f
ListDataStores + - 4+ o+ o+ - - - - -
SupportsSelectGrouping -+ + -+ - - - - -4
DestroyDataStore B S S T

42 | Chapter 6 FDO Capabilities

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;

A=05Geo.WFS; B=05Geo.WMS; C=05Geo.OGR

Capability

12 3 4

5

678 9 ABC

DestroySchema

SupportsParameters

DestroySpatialContext

SDF.CreateSDFFile

ActivateSpatialContext

Oracle.GetSpatiallndexes, Oracle.CreateSpatiallndex, Or-
acle.DestroySpatiallndex

SDF.Extended_Select

WMS.FeatureClassCRSNames, WMS.GetlmageFormats,
WMS.GetFeatureClassStyles

AcquireLock, CreateLongTransaction, DeactivateLongTrans-
action, RollbackLongTransaction, CommitLongTransaction,
GetLockOwners, ReleaseLock, GetLongTransactions, Get-
LockedObijects, ActivateLongTransaction, GetLockinfo

Connection

In C# you access the

0SGeo.FDO.Connections.Capabilities.IConnectionCapabilities using the
IConnection object (connection.ConnectionCapabilities).

Connection | 43

In C++ you access the FdoIConnectionCapabilities using the IConnection
object (connection->GetConnectionCapabilities()).

Capability Description

LockType_AllLongTransactionExclusive Indicates that only this user can modify this object in this
long transaction. No user, not even the user locking the
object, can modify the object in any long transaction created
as a descendent of the one containing the object being
locked. When not in a long transaction situation (for ex-
ample, if only a root long transaction exists), the lock be-
haves like an Exclusive lock.

LockType_Exclusive Indicates that only this user can modify this object. In a long
transaction situation, any user can modify the object in any
other long transaction, including the root long transaction
if it is not the current long transaction.

LockType_LongTransactionExclusive Indicates that only this user can modify this object in the
long transaction containing the object or any long transac-
tion created as a descendent of that one. When notin a
long transaction situation (for example, if only a root long
transaction exists), the lock behaves like an Exclusive lock.

LockType_Shared Indicates a shared lock type.

LockType_Transaction Indicates that a transaction lock should be applied to an
object.

SupportsConfiguration Indicates whether or not a provider can specify on a closed
connection an XML source to be used to configure the data
store.

SpatialContextExtentType_Dynamic Indicates that the spatial extent of the context is dynamic
and changes as data is added and removed from the con-
text.

SpatialContextExtentType_Static Indicates that the spatial extent of the context is static and

must be specified when the context is created.

44 | Chapter 6 FDO Capabilities

Capability Description

SupportsCSysWKTFromCSysName Indicates whether or not a provider supports the specifica-
tion of a coordinate system during the creation of a spatial
context using only the coordinate system name. The pro-
vider maps the name to the WKT internally.

SupportsFlush Indicates whether or not a provider supports the forced
write of cached data associated with a connection to the
target data store.

SupportsLocking Indicates whether or not a provider supports the set of
locking commands: acquire, get locked objects, get lock
owners, get lock info, and release.

SupportsLongTransactions Indicates whether or not a provider supports the set of long
transaction commands: activate, commit, create, deactivate,
and get.

SupportsMultipleSpatialContexts Indicates that the data store can contain multiple spatial

contexts but the provider does not necessarily support the
create spatial context command.

SupportsSQL Indicates whether or not a provider supports the SQL com-
mand.
SupportsTransactions Indicates whether or not a provider supports the creation

of a transaction associated with a connection to a data store.

ThreadCapability_PerConnectionThreaded Indicates that the provider supports a single thread per
connection. Multiple concurrent threads cannot access the
same connection object and only one command can be
executing per connection. Multiple connections can be
active concurrently as long as each is executing on its own
thread.

ThreadCapability_PerCommandThreaded Indicates that the provider supports a single thread per
command. Multiple concurrent threads cannot access the
same command object; however, multiple commands can
be executing concurrently against a single connection.

Connection | 45

Capability Description

ThreadCapability_SingleThreaded

Indicates that the provider is not thread safe.

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05SGeo.MySQL, 4=05Geo.PostGIS, 5=0S-
Geo.SQLServerSpatial;, 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=05SGeo.SHP; 9=05SGeo.WFS;

A=0S5Geo.WFS; B=20SGeo.WMS; C=05SGeo.OGR

Capability

A

B

SpatialContextExtentType_Static

ThreadCapability_PerConnectionThreaded

SupportsMultipleSpatialContexts

SupportsSQL

SupportsConfiguration

SupportsTransactions

LockType_Exclusive

SpatialContextExtentType_Dynamic

SupportsFlush

LockType_Transaction

LockType_AllLongTransactionExclusive, LockType_LongTrans-
actionExclusive, ThreadCapability_PerCommandThreaded,
LockType_Shared

SupportsLocking, SupportsCSysWKTFromCSysName, Sup-
portsLongTransactions

ThreadCapability_SingleThreaded

46 | Chapter 6 FDO Capabilities

Expression

In C# you access the
0SGeo.FDO.Connections.Capabilities.IExpressionCapabilities and the
0SGeo.FDO.Connections.Capabilities. FunctionDefinitionCollectionusing
the IConnection object, connection.ExpressionCapabilities, and
connection.ExpressionCapabilities.Functions respectively. Each
0SGeo.FDO.Connections.Capabilities.FunctionDefinition in the collection
has has a
0SGeo.FDO.Connections.Capabilities.ReadOnlySignatureDefinitionCollection,
which is accessed by functionDef.Signatures.

In C++ you access the FdoIExpressionCapabilities and the
FdoFunctionDefinitionCollection using the IConnection object,
connection->GetExpressionCapabilities(),

expression capabilities->GetFunctions () respectively. Each
FdoFunctionDefinition in the collection has an
FdoReadOnlySignatureDefinitionCollection, which is accessed by

functionDef->GetSignatures().

The functions can be broadly divided into two groups according to the mode
of their implementation. The largest group contains the functions whose
underlying implementation is based on the Expression Builder. The first release
of the Expression Builder component is in FDO 3.3. The remaining functions
are those whose implementation was not touched by the introduction of the
Expression Builder component.

The functions whose implementation is based on the Expression Builder are
further categorized for Ul purposes into 7 groups: aggregate, conversion, date,
geometry, math, numeric, and string. These UI categories are used in this
document to group the presentation of the functions.

General Capabilities

Capability Description

ExpressionType_Basic Indicates whether or not the provider supports basic
arithmetic expressions, for example, +, -, *, /, negate, and
string concatenation.

ExpressionType_Function Indicates whether or not the provider supports function
evaluations.

Expression | 47

Capability Description

ExpressionType_Parameter Indicates whether or not the provider supports parameter
substitution. An expression can be constructed using
named parameters and values bound to the parameter at
a later time. This allows the constructed expression to be
reused.

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=05SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=05SGeo.WMS; C=0SGeo.OGR

Capability 123 45678 9ABC
ExpressionType_Function + F + + + o+ + F o+ o+ 4+ o+
ExpressionType_Basic + F + + + - o+ o+ o+ -+ o+
ExpressionType_Parameter - -+ - - e -

Argument and Return Types

Tthe following tables specify the function name, arguments, and the type of
the return value. An argument is optional if it is enclosed in square brackets.
An argument may be a literal such as “ALL” or “DISTINCT” or a feature
property name. Where the argument value is a feature property name, the
type of the feature property is specified. The set of valid alternatives for an
argument value is indicated by enclosing the set of OR’d property types or
literal values in parentheses. For brevity’s sake, a ‘numeric’ property type
indicates the set of numeric property types, namely {Byte | Decimal | Double
| Int16 | Int32 | Int 64 | Single}. The other property types, BLOB, Boolean,
CLOB, DateTime, Geometry, and String, are indicated directly in the argument
specification.

Some functions have more than one return type. The general rule is that the
return type matches the argument type.

48 | Chapter 6 FDO Capabilities

Aggregate Expression Functions

These functions can be used with the SelectAggregates command.

Function Description
Name
Avg Returnsa double which is the average of the values identified by the

provided expression. Avg ([{ALL | DISTINCT},] numeric)

Count Returns an Int64 which is the number of rows returned by a query
identified by the provided expression. Count ([{ALL | DISTINCT},]
{bool | DateTime | numeric | string | blob | clob} | geometry})

Max Returns a DateTime, numeric or string in agreement with the type
of the argument, which is the maximum value of the provided expres-
sion. Max ([{ALL | DISTINCT},] { DateTime | numeric | string})

Median Represents an inverse distribution function that assumes a continuous
distribution model. It takes a numeric or date-time value and returns
a Double, which is the middle value or an interpolated value that
would be the middle value once the values are sorted. Median (nu-
meric)

Min Returns a DateTime, numeric or string in agreement with the type
of the argument, which is the minimum value of the provided expres-
sion. Min ([{ALL | DISTINCT},] { DateTime | numeric | string})

Stddev Returns a Double, which is the sample standard deviation of the
provided expression. Stddev ([{ALL | DISTINCT},] numeric)

Sum Returns a Double, which is the sum of the values identified by the
provided expression. Sum ([{ALL | DISTINCT},] numeric)

Spatial Extent Returns a byte array, which yields the spatial extent of a set of geo-
metries. The argument is the name of geometry property. SpatialEx-
tent (<geometries>). For example, given these geometries, POINT(1
1), LINESTRING(01, 21), and POLYGON((01, 21, 12, 01)), it returns
POLYGON((01 21, 22 02, 01)).

Expression | 49

NOTE The median is selected or calculated by doing the following:
1 Sort the sample in ascending order.

2 Calculate the Row of Interest (roi) using the forumula: roi = (1 +
((<sample_size> - 1) / 2)).

3 Compare three values: roi, Ceil(roi) and Floor(roi). If they are equal, the
median is the value in the Row Of Interest. If they are not equal, the
median is calculated by averaging the values in the rows preceding and
succeeding the Row of Interest.

NOTE The value returned by the StdDev function is known as the sample standard
deviation and represents an estimate of the standard deviation of a population
based on a random sample of that population. See the Wikipedia entry for further
discussion and a definition of the formula for sample standard deviation:
http://en.wikipedia.org/wiki/Standard_deviation.

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05Geo.WFS;
A=0S5Geo.WFS; B=20SGeo.WMS; C=0SGeo.OGR

Capability 123 45678 9ABC
Double Avg(Double) o+ 4+ o+ -+ o+ - -+ o+
Int64 Count(Int64) o4+ 4+ 4+ - o+ o+ - - 4o+
Double Max(Double) 4 4+ o+ 4+ - o+ - -+ o+
Double Min(Double) + o+ 4+ o+ -+ o+ - -+ o+
Double Sum(Double) o+ 4+ o+ - o+ o+ - -+ o+
BLOB SpatialExtents(BLOB) 4+ 4+ -+ -+ o+ o+ - 4 -

Double Avg(Byte), Double Avg(Decimal), Double Avg(Int16),
Double Avg(Int32), Double Avg(Int64), Double Avg(Single),
Double Avg(String,Byte), Double Avg(String,Decimal), Double
Avg(String,Double), Double Avg(String,Int16), Double

+
.
+
.
+
.
+
+
.
;
+
.

50 | Chapter 6 FDO Capabilities

http://en.wikipedia.org/wiki/Standard_deviation

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;

A=05Geo.WFS; B=05Geo.WMS; C=05Geo.OGR

Capability

123 45678 9ABC

Avg(String,Int32), Double Avg(String,Int64), Double
Avg(String,Single)

Int64 Count(BLOB), Int64 Count(Boolean), Int64 Count(Byte),
Int64 Count(CLOB), Int64 Count(DateTime), Int64
Count(Decimal), Int64 Count(Double), Int64 Count(Int16), Int64
Count(Int32), Int64 Count(Single), Int64 Count(String), Int64
Count(String,Boolean), Int64 Count(String,Byte), Int64
Count(String,DateTime), Int64 Count(String,Decimal), Int64
Count(String,Double), Int64 Count(String,Int16), Int64
Count(String,Int32), Int64 Count(String,Int64), Int64
Count(String,Single), Int64 Count(String,String)

Byte Max(Byte), Byte Max(String,Byte), DateTime Max(Date-
Time), DateTime Max(String,DateTime), Decimal Max(Decimal),
Decimal Max(String,Decimal), Double Max(String,Double), Int16
Max(Int16), Int16 Max(String,Int16), Int32 Max(Int32), Int32
Max(String,Int32), Int64 Max(Int64), Int64 Max(String,Int64),
Single Max(Single), Single Max(String,Single), String
Max(String), String Max(String,String)

Double Median(Byte), Double Median(Decimal), Double Medi-
an(Double), Double Median(Int16), Double Median(Int32),
Double Median(Int64), Double Median(Single)

Byte Min(Byte), Byte Min(String,Byte), DateTime Min(DateTime),
DateTime Min(String,DateTime), Decimal Min(Decimal),
Decimal Min(String,Decimal), Double Min(String,Double), Int16
Min(Int16), Int16 Min(String,Int16), Int32 Min(Int32), Int32
Min(String,Int32), Int64 Min(Int64), Int64 Min(String,Int64),
Single Min(Single), Single Min(String,Single), String Min(String),
String Min(String, String)

Double Stddev(Byte), Double Stddev(Decimal), Double
Stddev(Double), Double Stddev(Int16), Double Stddev(Int32),
Double Stddev(Int64), Double Stddev(Single), Double

+ o+ - -+ -
+ 4+ - -+ -
+ 4+ - -+ -
+ 4+ - -+ -
+ 4+ - -+ -

Expression | 51

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability

123 45678 9ABC

Stddev(String,Byte), Double Stddev(String,Decimal), Double
Stddev(String,Double), Double Stddev(String,Int16), Double
Stddev(String,Int32), Double Stddev(String,Int64), Double

Stddev(String,Single)

Double Sum(Byte), Double Sum(Decimal), Double Sum(Int16), + - + - + - + + - - + -
Double Sum(Int32), Double Sum(Int64), Double Sum(Single),

Double Sum(String,Byte), Double Sum(String,Decimal), Double

Sum(String,Double), Double Sum(String,Int16), Double

Sum(String,Int32), Double Sum(String,Int64), Double

Sum(String,Single)

Conversion Expression Functions

Function Name Description

NullValue

Evaluates two expressions and returns the first one if it does not
evaluate to NULL, the second otherwise. The signatures without
function name are Boolean(Boolean,Boolean), Byte(Byte,Byte),
DateTime(DateTime,DateTime), Decimal(Decimal,Decimal),
Double(Decimal,Double), Decimal(Decimal,Int16 | Int32),
Double(Decimal,Int64), Single(Decimal,Single),
Double(Double,Decimal | Double | Int16 | Int32 | Int64 | Single),
Double(Int16,Decimal | Double), Int16(Int16,Int16),
Int32(Int16,Int32), Int64(Int16,Int64), Single(Int16,Single),
Double(Int32,Decimal | Double), Int32(Int32,Int16 | Int32),
Int64(Int32,Int64), Double(Int32,Single)Double(Int64,Decimal |
Double | Single), Int64(Int64,Int16 | Int32 | Int64),
Double(Single,Decimal | Double | Int32 | Int64), Single(Single,Int16
| Single), String(String,Decimal | Double | Int16 | Int32 | Int64 |
Single | String)

ToDate

Converts a string with date/time information to a date. ToDate
(date_string [, format_string]) The default format_string is “DD
MON YYYY h24 mm ss”.

52 | Chapter 6 FDO Capabilities

Function Name Description

ToDouble Converts a numeric or string expression to a double. ToDouble
({numeric | string})

ToFloat Converts a numeric or string expression to a float. ToFloat ({numeric
| string})
Tolnt32 Converts a numeric or string expression to an int32. Tolnt32 ({nu-

meric | string})

Tolnt64 Converts a numeric or string expression to an int64. Tolnt64 ({nu-
meric | string})

ToString Converts a numeric or date expression to a string. ToString(numer-
ic), ToString (DateTime [, format_string]). The default format_string
is “DD-MON-YYYY h24:mm:ss”.

The ToDate function takes a string value representing date and/or time
information and converts it to a date object. The optional format specification
parameter defines the format used in the string to represent the date using
the abbreviations described in the following table. For example, for a string
containing the date April 2, 1998 the format specification should contain
Month DD, YYYY.

The ToString function takes a date value and creates a representation of it in
a string. The optional format specification parameter allows the user to define
the structure of the string to be created using the abbreviations described in
the following table.

Abbrevi- Description

ation

YY Indicates that a year is defined as a two digit number (example: 07).

YYYY Indicates that a year is defined as a four digit number (example: 2007).

MONTH Indicates that a month is defined by its name, all in uppercase letters (example: APRIL).
month Indicates that a month is defined by its name, all in lowercase letters (example: april).

Expression | 53

Abbrevi- Description

ation

Month Indicates that a month is defined by its name with the first letter being an uppercase
letter (example: April).

MON Indicates that a month is defined by its abbreviation, all in uppercase letters (example:
APR).

mon Indicates that a month is defined by its abbreviation, all in lowercase letters (example:
apr).

MM Indicates that a month is defined by its number (example: 04).

DD Indicates that a day is defined by its number (example: 04).

hh24 Indicates that a hour is defined by its number in the range [0-24]

hh12 Indicates that a hour is defined by its number in the range [1-12]

hh Represents a default representation of an hour. Defaults to hh24.

mm Indicates a minute definition

ss Indicates a second definition

ms Indicates a millisecond definition

am | pm The meridiem. Only considered if used with the time range [1-12] (format hh12).

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=05Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability 12345 6789ABC

Boolean NullValue(Boolean,Boolean), Byte NullValue(Byte,Byte), + - + - + - + 4+ - - + -
DateTime NullValue(DateTime,DateTime), Decimal Null-
Value(Decimal,Decimal), Decimal NullValue(Decimal,Int16),

54 | Chapter 6 FDO Capabilities

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;

A=05Geo.WFS; B=05Geo.WMS; C=05Geo.OGR

Capability

123456789 ABC

Decimal NullValue(Decimal,Int32), Double NullValue(Decim-
al,Double), Double NullValue(Decimal,Int64), Double Null-
Value(Double,Decimal), Double NullValue(Double,Double),
Double NullValue(Double,Int16), Double NullValue(Double,Int32),
Double NullValue(Double,Int64), Double Null-
Value(Double,Single), Double NullValue(Int16,Decimal), Double
NullValue(Int16,Double), Double NullValue(Int32,Decimal),
Double NullValue(Int32,Double), Double NullValue(Int32,Single),
Double NullValue(Int64,Decimal), Double Null-
Value(Int64,Double), Double NullValue(Int64,Single), Double
NullValue(Single,Decimal), Double NullValue(Single,Double),
Double NullValue(Single,Int32), Double NullValue(Single,Int64),
Int16 NullValue(Int16,Int16), Int32 NullValue(Int16,Int32), Int32
NullValue(Int32,Int16), Int32 NullValue(Int32,Int32), Int64 Null-
Value(Int16,Int64), Int64 NullValue(Int32,Int64), Int64 Null-
Value(Int64,Int16), Int64 NullValue(Int64,Int32), Int64 Null-
Value(Int64,Int64), Single NullValue(Decimal,Single), Single
NullValue(Int16,Single), Single NullValue(Single,Int16), Single
NullValue(Single,Single), String NullValue(String,Decimal), String
NullValue(String,Double), String NullValue(String,Int16), String
NullValue(String,Int32), String NullValue(String,Int64), String
NullValue(String,Single), String NullValue(String, String)

DateTime ToDate(String), DateTime ToDate(String,String)

Double ToDouble(Byte), Double ToDouble(Decimal), Double
ToDouble(Double), Double ToDouble(Int16), Double To-
Double(Int32), Double ToDouble(Int64), Double To-
Double(Single), Double ToDouble(String)

Single ToFloat(Byte), Single ToFloat(Decimal), Single To-
Float(Double), Single ToFloat(Int16), Single ToFloat(Int32), Single
ToFloat(Int64), Single ToFloat(Single), Single ToFloat(String)

-+ o+ - -+ -
-+ o+ - -+ -
-+ o+ - -+ -

Expression | 55

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;

A=05Geo.WFS; B=05Geo.WMS; C=05Geo.OGR

Capability

123456789 ABC

Int32 Tolnt32(Byte), Int32 Tolnt32(Decimal), Int32
Tolnt32(Double), Int32 Tolnt32(Int16), Int32 Tolnt32(Int32),

Int32 ToInt32(Int64), Int32 Tolnt32(Single), Int32 Tolnt32(String)

Int64 Tolnt64(Byte), Int64 Tolnt64(Decimal), Int64
Tolnt64(Double), Int64 Tolnt64(Int16), Int64 Tolnt64(Int32),

Int64 Tolnt64(Int64), Int64 Tolnt64(Single), Int64 Tolnt64(String)

String ToString(Byte), String ToString(DateTime), String To-
String(DateTime, String), String ToString(Decimal), String To-

String(Double), String ToString(Int16), String ToString(Int32),

String ToString(Int64), String ToString(Single)

Date Expression Functions

Function Name

+ -+ -+ -+ + - - + -

+ -+ -+ -+ + - -+ -

+ -+ - 4+ -+ + - -+ -
Description

AddMonths

Adds a specified number of months to a
given date expression and returns a Date-
Time. AddMonths (date_time, numeric)

CurrentDate

Returns the current date. CurrentDate ()

Extract

Extracts a specified portion of a date and
returns a DateTime. Extract ({YEARI
MONTH | DAY | HOUR | MINUTE |
SECOND}, date_time)

MonthsBetween

56 | Chapter 6 FDO Capabilities

Calculates the number of months between
two provide date expressions and returns

Function Name Description

a Double. MonthsBetween (date_time,

date_time)

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05SGeo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;

A=0S5Geo.WFS; B=0SGeo.WMS; C=0SGeo.OGR

Capability 123 4567 8 9ABC

DateTime AddMonths(DateTime,Byte), DateTime + -+ - o+
AddMonths(DateTime,Decimal), DateTime AddMonths(Date-

Time,Double), DateTime AddMonths(DateTime,Int16), DateTime
AddMonths(DateTime,Int32), DateTime AddMonths(Date-

Time,Int64), DateTime AddMonths(DateTime,Single)

DateTime CurrentDate() + - o+ - 4 + o+ - - 4 -
DateTime Extract(String,DateTime) + - + -+ + 4+ - -+ -
Double MonthsBetween(DateTime,DateTime) + - + -+ + + - - o+ -

Geometry Expression Functions

Function Name Description

Area2D Returns a Double, which is the area of a

geometry. Area2D (<geometry>)

Length2D Returns a Double, which is the length of a
geometry. Length2D (<geometry>)

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05SGeo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;

A=0S5Geo.WFS; B=0SGeo.WMS; C=05SGeo.OGR

Capability 12345678 9ABC

Double Area2D(BLOB) + -+ -+

Expression | 57

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability

12345678 9ABC

Double Length2D(BLOB)

Mathematical Expression Functions

Function Name Description

Abs

Returns the absolute value of a numeric expression. Abs (numeric).
The return type is the same as the argument type.

Acos

Returns a Double, which is the arc cosine of a numeric expression.
Acos (numeric)

Asin

Returns a Double, which is the arc sine of a numeric expression.
Asin (numeric)

Atan

Returns a Double, which is the arc tangent of a numeric expression.
Atan (numeric)

Atan2

Returns a Double, which is the arc tangent based on two numeric
expressions. Atan2 (numeric, numeric)

Cos

Returns a Double, which is the cosine of a numeric expression. Cos
(numeric)

Exp

Returns a Double, which is e raised to the power of a numeric ex-
pression. Exp (numeric)

Ln

Returns a Double, which is the natural logarithm of a numeric ex-
pression. Ln (numeric)

Log

Returns a Double, which is the logarithm of a numeric expression
using the provided base. Log (base_numeric, numeric)

58 | Chapter 6 FDO Capabilities

Function Name Description

Mod

Returns the remainder of the division of two numeric expressions.
Mod (numeric, divisior_numeric). The implementation alogirthm
is Mod (m, n) = (sign(m) * (abs(m) - (abs(n) * Floor(m/n))))).
mod(15,4) returns 3. mod(15,0) returns 15. mod(11.6,2) returns
1.6. mod(11.6,2.1) returns 1.1. mod(-15,4) returns -3. mod(-15,0)
returns -15. The return signatures without the function name are:
Byte(Byte,Byte | Int16 | Int32 | Int64), Double(Byte,Decimal |
Double), Single(Byte,Single), Double(Decimal | Double,Byte |
Decimal | Double | Int16 | Int32 | Int64 | Single), Int16(Int16,Byte
['Int16 | Int32 | Int64), Double(Int16,Decimal | Double),
Single(Int16,Single), Int32(Int32,Byte), Double(Int32,Decimal |
Double), Int16(Int32,Int16), Int32(Int32,Int32 | Int64),
Single(Int32,Single), Int64(Int64,Byte | Int64),
Double(Int64,Decimal | Double), Int16(Int64,Int16),
Int32(Int64,Int32), Single(Int64,Single), Single(Single,Byte | Int16
['Int32 | Int64 | Single), Double(Single,Decimal | Double)

Power

Returns a Double, which is the result of a numeric expression raised
to the power of another numeric expression. Power (numeric,
power_numeric)

Remainder

Returns the remainder of the division of two numeric expressions.
Remainder (numeric, divisor_numeric). The implementation al-
gorithm is Remainder (m,n) = (sign(m) * (abs(m) - (abs(n) *
Round(m/n)))). remainder(15,6) returns 3. remainder(15,5) returns
0. remainder(15,4) returns -1. remainder(11.6,2) returns -0.4. re-
mainder(11.6,2.1) returns -1. remainder(-15,4) returns 1. The sig-
natures without function name are: Int16(Byte,Byte | Int16),
Double(Byte,Decimal | Double), Int32(Byte,Int32),
Int64(Byte,Int64), Single(Byte,Single), Double(Decimal |
Double,Byte | Decimal | Double | Int16 | Int32 | Int64 | Single),
Int16(Int16,Byte | Int16 | Int32 | Int32), Double(Int16,Decimal |
Double), Single(Int16,Single), Int32(Int32,Byte | Int32 | Int64),
Double(Int32,Decimal | Double), Int16(Int32,Int16),
Single(Int32,Single)Int64(Int64,Byte | Int64),
Double(Int64,Decimal | Double), Int16(Int64,Int16),
Int32(Int64,Int32), Single(Int64,Single), Single(Single,Byte | Int16
[Int32 | Int64 | Single))

Expression | 59

Function Name Description

Sin Returns a Double, which is the sine of a numeric expression. Sin
(numeric)
Sqgrt Returns a Double, which is the square root of a numeric expression.

Sqgrt (numeric)

Tan Returns a Double, which is the tangent of a numeric expression.

Tan (numeric)

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=05SGeo.SHP; 9=05Geo.WFS;

A=0SGeo.WFS; B=05SGeo.WMS; C=0SGeo.OGR

Capability

8

9ABC

Byte Abs(Byte), Decimal Abs(Decimal), Double Abs(Double),
Int16 Abs(Int16), Int32 Abs(Int32), Int64 Abs(Int64), Single
Abs(Single)

Double Acos(Byte), Double Acos(Decimal), Double Acos(Double),
Double Acos(Int16), Double Acos(Int32), Double Acos(Int64),
Double Acos(Single)

Double Asin(Byte), Double Asin(Decimal), Double Asin(Double),
Double Asin(Int16), Double Asin(Int32), Double Asin(Int64),
Double Asin(Single)

Double Atan(Byte), Double Atan(Decimal), Double Atan(Double),
Double Atan(Int16), Double Atan(Int32), Double Atan(Int64),
Double Atan(Single)

Double Atan2(Byte,Byte), Double Atan2(Byte,Decimal), Double
Atan2(Byte,Double), Double Atan2(Byte,Int16), Double
Atan2(Byte,Int32), Double Atan2(Byte,Int64), Double
Atan2(Byte,Single), Double Atan2(Decimal,Byte), Double
Atan2(Decimal,Decimal), Double Atan2(Decimal,Double), Double
Atan2(Decimal,Int16), Double Atan2(Decimal,Int32), Double
Atan2(Decimal,Int64), Double Atan2(Decimal,Single), Double

60 | Chapter 6 FDO Capabilities

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=05Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability 123 45678 9ABC

Atan2(Double,Byte), Double Atan2(Double,Decimal), Double
Atan2(Double,Double), Double Atan2(Double,Int16), Double
Atan2(Double,Int32), Double Atan2(Double,Int64), Double
Atan2(Double,Single), Double Atan2(Int16,Byte), Double
Atan2(Int16,Decimal), Double Atan2(Int16,Double), Double
Atan2(Int16,Int16), Double Atan2(Int16,Int32), Double
Atan2(Int16,Int64), Double Atan2(Int16,Single), Double
Atan2(Int32,Byte), Double Atan2(Int32,Decimal), Double
Atan2(Int32,Double), Double Atan2(Int32,Int16), Double
Atan2(Int32,Int32), Double Atan2(Int32,Int64), Double
Atan2(Int32,Single), Double Atan2(Int64,Byte), Double
Atan2(Int64,Decimal), Double Atan2(Int64,Double), Double
Atan2(Int64,Int16), Double Atan2(Int64,Int32), Double
Atan2(Int64,Int64), Double Atan2(Int64,Single), Double
Atan2(Single,Byte), Double Atan2(Single,Decimal), Double
Atan2(Single,Double), Double Atan2(Single,Int16), Double
Atan2(Single,Int32), Double Atan2(Single,Int64), Double
Atan2(Single,Single)

Double Cos(Byte), Double Cos(Decimal), Double Cos(Double),
Double Cos(Int16), Double Cos(Int32), Double Cos(Int64),
Double Cos(Single)

+
'
+
'
+
'
+
+
'
'
+
'

Double Exp(Byte), Double Exp(Decimal), Double Exp(Double), + -+ - + -+ + - - + -
Double Exp(Int16), Double Exp(Int32), Double Exp(Int64),
Double Exp(Single)

Double Ln(Byte), Double Ln(Decimal), Double Ln(Double), + -+ -+ -+ + - - o+ -
Double Ln(Int16), Double Ln(Int32), Double Ln(Int64), Double
Ln(Single)

Double Log(Byte,Byte), Double Log(Byte,Decimal), Double + - 4+ -+ -+ 4+ - -+ -
Log(Byte,Double), Double Log(Byte,Int16), Double

Log(Byte,Int32), Double Log(Byte,Int64), Double

Log(Byte,Single), Double Log(Decimal,Byte), Double

Log(Decimal,Decimal), Double Log(Decimal,Double), Double

Expression | 61

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability 123 45678 9ABC

Log(Decimal,Int16), Double Log(Decimal,Int32), Double
Log(Decimal,Int64), Double Log(Decimal,Single), Double
Log(Double,Byte), Double Log(Double,Decimal), Double
Log(Double,Double), Double Log(Double,Int16), Double
Log(Double,Int32), Double Log(Double,Int64), Double
Log(Double,Single), Double Log(Int16,Byte), Double
Log(Int16,Decimal), Double Log(Int16,Double), Double
Log(Int16,Int16), Double Log(Int16,Int32), Double
Log(Int16,Int64), Double Log(Int16,Single), Double
Log(Int32,Byte), Double Log(Int32,Decimal), Double
Log(Int32,Double), Double Log(Int32,Int16), Double
Log(Int32,Int32), Double Log(Int32,Int64), Double
Log(Int32,Single), Double Log(Int64,Byte), Double
Log(Int64,Decimal), Double Log(Int64,Double), Double
Log(Int64,Int16), Double Log(Int64,Int32), Double
Log(Int64,Int64), Double Log(Int64,Single), Double
Log(Single,Byte), Double Log(Single,Decimal), Double
Log(Single,Double), Double Log(Single,Int16), Double
Log(Single,Int32), Double Log(Single,Int64), Double
Log(Single,Single)

Byte Mod(Byte,Byte), Byte Mod(Byte,Int16), Byte + -+ -+ -+ o+ - -+ -
Mod(Byte,Int32), Byte Mod(Byte,Int64), Double
Mod(Byte,Decimal), Double Mod(Byte,Double), Double
Mod(Decimal,Byte), Double Mod(Decimal,Decimal), Double
Mod(Decimal,Double), Double Mod(Decimal,Int16), Double
Mod(Decimal,Int32), Double Mod(Decimal,Int64), Double
Mod(Decimal,Single), Double Mod(Double,Byte), Double
Mod(Double,Decimal), Double Mod(Double,Double), Double
Mod(Double,Int16), Double Mod(Double,Int32), Double
Mod(Double,Int64), Double Mod(Double,Single), Double
Mod(Int16,Decimal), Double Mod(Int16,Double), Double
Mod(Int32,Decimal), Double Mod(Int32,Double), Double
Mod(Int64,Decimal), Double Mod(Int64,Double), Double
Mod(Single,Decimal), Double Mod(Single,Double), Int16
Mod(Int16,Byte), Int16 Mod(Int16,Int16), Int16
Mod(Int16,Int32), Int16 Mod(Int16,Int64), Int16

62 | Chapter 6 FDO Capabilities

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;

A=05Geo.WFS; B=05Geo.WMS; C=05Geo.OGR

Capability

123 45678 9ABC

Mod(Int32,Int16), Int16 Mod(Int64,Int16), Int32
Mod(Int32,Byte), Int32 Mod(Int32,Int32), Int32
Mod(Int32,Int64), Int32 Mod(Int64,Int32), Int64
Mod(Int64,Byte), Int64 Mod(Int64,Int64), Single
Mod(Byte,Single), Single Mod(Int16,Single), Single
Mod(Int32,Single), Single Mod(Int64,Single), Single
Mod(Single,Byte), Single Mod(Single,Int16), Single
Mod(Single,Int32), Single Mod(Single,Int64), Single
Mod(Single,Single)

Double Power(Byte,Byte), Double Power(Byte,Decimal), Double
Power(Byte,Double), Double Power(Byte,Int16), Double
Power(Byte,Int32), Double Power(Byte,Int64), Double
Power(Byte,Single), Double Power(Decimal,Byte), Double
Power(Decimal,Decimal), Double Power(Decimal,Double), Double
Power(Decimal,Int16), Double Power(Decimal,Int32), Double
Power(Decimal,Int64), Double Power(Decimal,Single), Double
Power(Double,Byte), Double Power(Double,Decimal), Double
Power(Double,Double), Double Power(Double,Int16), Double
Power(Double,Int32), Double Power(Double,Int64), Double
Power(Double,Single), Double Power(Int16,Byte), Double
Power(Int16,Decimal), Double Power(Int16,Double), Double
Power(Int16,Int16), Double Power(Int16,Int32), Double
Power(Int16,Int64), Double Power(Int16,Single), Double
Power(Int32,Byte), Double Power(Int32,Decimal), Double
Power(Int32,Double), Double Power(Int32,Int16), Double
Power(Int32,Int32), Double Power(Int32,Int64), Double
Power(Int32,Single), Double Power(Int64,Byte), Double
Power(Int64,Decimal), Double Power(Int64,Double), Double
Power(Int64,Int16), Double Power(Int64,Int32), Double
Power(Int64,Int64), Double Power(Int64,Single), Double
Power(Single,Byte), Double Power(Single,Decimal), Double
Power(Single,Double), Double Power(Single,Int16), Double
Power(Single,Int32), Double Power(Single,Int64), Double
Power(Single,Single)

Expression | 63

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability 123 45678 9ABC

Double Remainder(Byte,Decimal), Double Re- + -+ -+ -+ 4+ - -+ -
mainder(Byte,Double), Double Remainder(Decimal,Byte), Double
Remainder(Decimal,Decimal), Double Remainder(Decim-
al,Double), Double Remainder(Decimal,Int16), Double Re-
mainder(Decimal,Int32), Double Remainder(Decimal,Int64),
Double Remainder(Decimal,Single), Double Re-
mainder(Double,Byte), Double Remainder(Double,Decimal),
Double Remainder(Double,Double), Double Re-
mainder(Double,Int16), Double Remainder(Double,Int32),
Double Remainder(Double,Int64), Double Re-
mainder(Double,Single), Double Remainder(Int16,Decimal),
Double Remainder(Int16,Double), Double Re-
mainder(Int32,Decimal), Double Remainder(Int32,Double),
Double Remainder(Int64,Decimal), Double Re-
mainder(Int64,Double), Double Remainder(Single,Decimal),
Double Remainder(Single,Double), Int16 Remainder(Byte,Byte),
Int16 Remainder(Byte,Int16), Int16 Remainder(Int16,Byte), Int16
Remainder(Int16,Int16), Int16 Remainder(Int16,Int32), Int16
Remainder(Int16,Int64), Int16 Remainder(Int32,Int16), Int16
Remainder(Int64,Int16), Int32 Remainder(Byte,Int32), Int32 Re-
mainder(Int32,Byte), Int32 Remainder(Int32,Int32), Int32 Re-
mainder(Int32,Int64), Int32 Remainder(Int64,Int32), Int64 Re-
mainder(Byte,Int64), Int64 Remainder(Int64,Byte), Int64 Re-
mainder(Int64,Int64), Single Remainder(Byte,Single), Single Re-
mainder(Int16,Single), Single Remainder(Int32,Single), Single
Remainder(Int64,Single), Single Remainder(Single,Byte), Single
Remainder(Single,Int16), Single Remainder(Single,Int32), Single
Remainder(Single,Int64), Single Remainder(Single,Single)

Double Sin(Byte), Double Sin(Decimal), Double Sin(Double), + -+ - 4+ -+ 4+ - - 4 -
Double Sin(Int16), Double Sin(Int32), Double Sin(Int64), Double

Sin(Single)

Double Sqrt(Byte), Double Sqrt(Decimal), Double Sgrt(Double), + - + - + - + + - - + -

Double Sqgrt(Int16), Double Sqrt(Int32), Double Sqrt(Int64),
Double Sqgrt(Single)

64 | Chapter 6 FDO Capabilities

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=05Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability 123 4567 89ABC

Double Tan(Byte), Double Tan(Decimal), Double Tan(Double), + -+ - + -+ + - - + -
Double Tan(Int16), Double Tan(Int32), Double Tan(Int64),
Double Tan(Single)

Numeric Expression Functions

Function Name Description

Ceil Returns the smallest integer greater than or equal to a numeric ex-
pression. The return type is the same as the argument type. Where
the argument is a Decimal, Double, or Single, the returned value is
an integral number. Ceil(numeric)

Floor Returns the largest integer less than or equal to a numeric expres-
sion. The return type is the same as the argument type. Where the
argument is a Decimal, Double, or Single, the returned value is an
integral number. Floor (numeric)

Round Returns the rounded value of a numeric expression. The return type
is the same as the type of the first argument. Round (numeric [,
number_of_decimals_numeric]).

Sign Returns and Int32 which is -1 if the provided numeric expression
evaluates to a value less than 0, O if the expression evaluates to 0
and 1 if the expression evaluates to a value bigger than 0. Sign
(numeric).

Trunc Truncates a numeric or date expression. The return type is the same
as the type of the first argument. Trunc (date_time, {YEAR | MONTH

Expression | 65

Function Name Description

| DAY | HOUR | MINUTE}). Trunc (numeric [, number_of_decim-
als_numeric]).

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05SGeo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=05SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=0SGeo.WMS; C=0SGeo.OGR

Capability 1234567 8 9AB
Int64 Ceil(Int64) o+ 4+ - 4 - o+ o+ - -+
Int64 Floor(Int64) + 4+ 4+ - o+ -+ o+ - -+
Byte Ceil(Byte), Decimal Ceil(Decimal), Double Ceil(Double), + - + - + - + + - - +

Int16 Ceil(Int16), Int32 Ceil(Int32), Single Ceil(Single)

Byte Floor(Byte), Decimal Floor(Decimal), Double + -+ - + - + + - - 4
Floor(Double), Int16 Floor(Int16), Int32 Floor(Int32), Single
Floor(Single)

Byte Round(Byte), Byte Round(Byte,Byte), Byte + - 4+ -+ -+ o+ - -+
Round(Byte,Decimal), Byte Round(Byte,Double), Byte
Round(Byte,Int16), Byte Round(Byte,Int32), Byte
Round(Byte,Int64), Byte Round(Byte,Single), Decimal
Round(Decimal), Decimal Round(Decimal,Byte), Decimal
Round(Decimal,Decimal), Decimal Round(Decimal,Double),
Decimal Round(Decimal,Int16), Decimal Round(Decim-
al,Int32), Decimal Round(Decimal,Int64), Decimal
Round(Decimal,Single), Double Round(Double), Double
Round(Double,Byte), Double Round(Double,Decimal), Double
Round(Double,Double), Double Round(Double,Int16), Double
Round(Double,Int32), Double Round(Double,Int64), Double
Round(Double,Single), Int16 Round(Int16), Int16
Round(Int16,Byte), Int16 Round(Int16,Decimal), Int16
Round(Int16,Double), Int16 Round(Int16,Int16), Int16
Round(Int16,Int32), Int16 Round(Int16,Int64), Int16
Round(Int16,Single), Int32 Round(Int32), Int32
Round(Int32,Byte), Int32 Round(Int32,Decimal), Int32
Round(Int32,Double), Int32 Round(Int32,Int16), Int32

66 | Chapter 6 FDO Capabilities

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=05Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability 1234567 8 9ABC

Round(Int32,Int32), Int32 Round(Int32,Int64), Int32
Round(Int32,Single), Int64 Round(Int64), Int64
Round(Int64,Byte), Int64 Round(Int64,Decimal), Int64
Round(Int64,Double), Int64 Round(Int64,Int16), Int64
Round(Int64,Int32), Int64 Round(Int64,Int64), Int64
Round(Int64,Single), Single Round(Single), Single
Round(Single,Byte), Single Round(Single,Decimal), Single
Round(Single,Double), Single Round(Single,Int16), Single
Round(Single,Int32), Single Round(Single,Int64), Single
Round(Single,Single)

Int32 Sign(Byte), Int32 Sign(Decimal), Int32 Sign(Double), + -+ -+ -+ + - -+ -
Int32 Sign(Int16), Int32 Sign(Int32), Int32 Sign(Int64), Int32

Sign(Single)

Byte Trunc(Byte), Byte Trunc(Byte,Byte), Byte + -+ -+ -+ o+ - -+ -

Trunc(Byte,Decimal), Byte Trunc(Byte,Double), Byte
Trunc(Byte,Int16), Byte Trunc(Byte,Int32), Byte
Trunc(Byte,Int64), Byte Trunc(Byte,Single), DateTime
Trunc(DateTime,String), Decimal Trunc(Decimal), Decimal
Trunc(Decimal,Byte), Decimal Trunc(Decimal,Decimal),
Decimal Trunc(Decimal,Double), Decimal Trunc(Decim-
al,Int16), Decimal Trunc(Decimal,Int32), Decimal
Trunc(Decimal,Int64), Decimal Trunc(Decimal,Single), Double
Trunc(Double), Double Trunc(Double,Byte), Double
Trunc(Double,Decimal), Double Trunc(Double,Double),
Double Trunc(Double,Int16), Double Trunc(Double,Int32),
Double Trunc(Double,Int64), Double Trunc(Double,Single),
Int16 Trunc(Int16), Int16 Trunc(Int16,Byte), Int16
Trunc(Int16,Decimal), Int16 Trunc(Int16,Double), Int16
Trunc(Int16,Int16), Int16 Trunc(Int16,Int32), Int16
Trunc(Int16,Int64), Int16 Trunc(Int16,Single), Int32
Trunc(Int32), Int32 Trunc(Int32,Byte), Int32
Trunc(Int32,Decimal), Int32 Trunc(Int32,Double), Int32
Trunc(Int32,Int16), Int32 Trunc(Int32,Int32), Int32
Trunc(Int32,Int64), Int32 Trunc(Int32,Single), Int64
Trunc(Int64), Int64 Trunc(Int64,Byte), Int64

Expression | 67

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability 1234567 8 9ABC

Trunc(Int64,Decimal), Int64 Trunc(Int64,Double), Int64
Trunc(Int64,Int16), Int64 Trunc(Int64,Int32), Int64
Trunc(Int64,Int64), Int64 Trunc(Int64,Single), Single
Trunc(Single), Single Trunc(Single,Byte), Single
Trunc(Single,Decimal), Single Trunc(Single,Double), Single
Trunc(Single,Int16), Single Trunc(Single,Int32), Single
Trunc(Single,Int64), Single Trunc(Single,Single)

String Expression Functions

All of these functions return a string.

Function Name Description

Concat Returns the concatenation of two string expressions. Concat
({boolean | date | numeric | string}, {boolean | date | numeric |
string})

Instr Returns an Int64, which is the position of a substring in a string

expression. Instr(string,string).

Length Returns an Int64, which is the length of a string expression.
Length(string).
Lower Converts all uppercase letters in a string expression into lowercase

letters. string Lower (string)

Lpad Pads a string expression to the left to a predefined string length.
string Lpad (string, TotalLengthOfResult [, pad-string]). If used with
two parameters only, the pad-string is a single space character.

Ltrim Removes leading blanks from a string expression. string Ltrim
(string).

68 | Chapter 6 FDO Capabilities

Function Name

Description

Rpad

Pads a string expression to the right to a predefined string length.
string Rpad (string, TotalLengthOfResult [, pad-string]). If used
with two parameters only, the pad-string is a single space character.

Rtrim

Removes trailing blanks from a string expression. string Rtrim
(string)

Soundex

Returns a string, which is the phonetic representation of a string
expression. See the entry in Wikipedia for more information, ht-
tp://en.wikipedia.org/wiki/Soundex. Soundex (string). Soun-
dex(‘eight’) returns “E230” and Soundex(‘expression’) returns
“E216".

Substr

Extracts a substring from a string expression. string Substr (string,
start_pos [, length])

Translate

Replaces a set of letters in a string. Translate (string, from_set_string,
to_set_string). If string is “SQL*Plus User's Guide” and
from_set_string is ' */", thatis, ‘{space}{asterisk}{forward slash}
{single quote}{single quote}’ and the to_set_string is'___', that is,
‘{underscore}{underscore}{underscore}’, then the returned string
is ‘'SQL_PLus_Users_Guide’. Translate looks for each character in
the from_set_string in the string argument and replaces it with the
corresponding character from the to_set_string. In this case two
spaces are replace by underscores and an asterisk is replaced by n
underscore. There is no forward slash in the target string to be re-
placed, and there is no replacement character in the to_set_string
corresponding to the single apostrophe character in the
from_set_string When there is no replacement character in the
to_set_string corresponding to a character in the from_set_string,

the character in the from_set_string is removed wherever it is found
in the target string..

Trim

Removes leading and/or trailing blanks from a string expression.
Trim ([{BOTH | LEADING | TRAILING},] string).

Expression | 69

http://en.wikipedia.org/wiki/Soundex
http://en.wikipedia.org/wiki/Soundex

Function Name Description

Upper Converts all lowercase letters in a string expression into uppercase
letters. Upper (string).

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05SGeo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=05SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=0SGeo.WMS; C=0SGeo.OGR

Capability 12345678 9ABC
String Concat(String,String) o4+ 4+ 4+ 4+ -+ o+ - - 4 -
String Concat(Boolean,Boolean), String Concat(Boolean,Byte), + -+ -+ -+ o+ - -+ -

String Concat(Boolean,DateTime), String Concat(Boolean,Decim-
al), String Concat(Boolean,Double), String Concat(Boolean,Int16),
String Concat(Boolean,Int32), String Concat(Boolean,Int64), String
Concat(Boolean,Single), String Concat(Boolean,String), String
Concat(Byte,Boolean), String Concat(Byte,Byte), String Con-
cat(Byte,DateTime), String Concat(Byte,Decimal), String Con-
cat(Byte,Double), String Concat(Byte,Int16), String Con-
cat(Byte,Int32), String Concat(Byte,Int64), String Con-
cat(Byte,Single), String Concat(Byte,String), String Concat(Date-
Time,Boolean), String Concat(DateTime,Byte), String Concat(Dat-
eTime,DateTime), String Concat(DateTime,Decimal), String
Concat(DateTime,Double), String Concat(DateTime,Int16), String
Concat(DateTime,Int32), String Concat(DateTime,Int64), String
Concat(DateTime,Single), String Concat(DateTime,String), String
Concat(Decimal,Boolean), String Concat(Decimal,Byte), String
Concat(Decimal,DateTime), String Concat(Decimal,Decimal),
String Concat(Decimal,Double), String Concat(Decimal,Int16),
String Concat(Decimal,Int32), String Concat(Decimal,Int64),
String Concat(Decimal,Single), String Concat(Decimal,String),
String Concat(Double,Boolean), String Concat(Double,DateTime),
String Concat(Double,Decimal), String Concat(Double,Double),
String Concat(Double,Int16), String Concat(Double,Int32), String
Concat(Double,Int64), String Concat(Double,Single), String
Concat(Double,String), String Concat(Int16,Boolean), String
Concat(Int16,Byte), String Concat(Int16,DateTime), String Con-
cat(Int16,Decimal), String Concat(Int16,Double), String Con-
cat(Int16,Int16), String Concat(Int16,Int32), String Con-
cat(Int16,Int64), String Concat(Int16,Single), String Con-

70 | Chapter 6 FDO Capabilities

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=05Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability 12345678 9ABC

cat(Int16,String), String Concat(Int32,Boolean), String Con-
cat(Int32,Byte), String Concat(Int32,DateTime), String Con-
cat(Int32,Decimal), String Concat(Int32,Double), String Con-
cat(Int32,Int16), String Concat(Int32,Int32), String Con-
cat(Int32,Int64), String Concat(Int32,Single), String Con-
cat(Int32,String), String Concat(Int64,Boolean), String Con-
cat(Int64,Byte), String Concat(Int64,DateTime), String Con-
cat(Int64,Decimal), String Concat(Int64,Double), String Con-
cat(Int64,Int16), String Concat(Int64,Int32), String Con-
cat(Int64,Int64), String Concat(Int64,Single), String Con-
cat(Int64,String), String Concat(Single,Boolean), String Con-
cat(Single,Byte), String Concat(Single,DateTime), String Con-
cat(Single,Decimal), String Concat(Single,Double), String Con-
cat(Single,Int16), String Concat(Single,Int32), String Con-
cat(Single,Int64), String Concat(Single,Single), String Con-
cat(Single,String), String Concat(String,Boolean), String Con-
cat(String,Byte), String Concat(String,DateTime), String Con-
cat(String,Decimal), String Concat(String,Double), String Con-
cat(String,Int16), String Concat(String,Int32), String Con-
cat(String,Int64), String Concat(String,Single)

Int64 Instr(String, String) + - o+ -+ -+ o+ - -+ -
Int64 Length(String) oo 4 -+ -+ o+ - -+ -
String Lower(String) I

+
[
+
[
+
'
+
+
[
'
+
'

String Lpad(String,Byte), String Lpad(String,Byte, String), String
Lpad(String,Decimal), String Lpad(String,Decimal,String), String
Lpad(String,Double), String Lpad(String,Double,String), String
Lpad(String,Int16), String Lpad(String,Int16,String), String
Lpad(String,Int32), String Lpad(String,Int32,String), String
Lpad(String,Int64), String Lpad(String,Int64,String), String
Lpad(String,Single), String Lpad(String,Single, String)

String Ltrim(String) + - 4+ - 4+ -+ o+ - -+ -

Expression | 71

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability 12345678 9ABC

String Rpad(String,Byte), String Rpad(String,Byte,String), String + - + - + - + + - - + -
Rpad(String,Decimal), String Rpad(String,Decimal,String), String

Rpad(String,Double), String Rpad(String,Double,String), String

Rpad(String,Int16), String Rpad(String,Int16,String), String

Rpad(String,Int32), String Rpad(String,Int32,String), String

Rpad(String,Int64), String Rpad(String,Int64,String), String

Rpad(String,Single), String Rpad(String,Single,String)

String Rtrim(String) + - 4+ - 4+ -+ o+ - -3 -
String Soundex(String) oo 4 -+ -+ o+ - -+ -
String Substr(String,Byte), String Substr(String,Byte,Byte), String + - + - + - + + - - + -

Substr(String,Byte,Decimal), String Substr(String,Byte,Double),
String Substr(String,Byte, Int16), String Substr(String,Byte,Int32),
String Substr(String,Byte,Int64), String Substr(String,Byte,Single),
String Substr(String,Decimal), String Substr(String,Decimal,Byte),
String Substr(String,Decimal,Decimal), String Substr(String,Decim-
al,Double), String Substr(String,Decimal,Int16), String Sub-
str(String,Decimal,Int32), String Substr(String,Decimal,Int64),
String Substr(String,Decimal,Single), String Substr(String,Double),
String Substr(String,Double,Byte), String Sub-
str(String,Double,Decimal), String Substr(String,Double,Double),
String Substr(String,Double,Int16), String Sub-
str(String,Double, Int32), String Substr(String,Double,Int64), String
Substr(String,Double,Single), String Substr(String,Int16), String
Substr(String,Int16,Byte), String Substr(String,Int16,Decimal),
String Substr(String,Int16,Double), String Sub-
str(String,Int16,Int16), String Substr(String,Int16,Int32), String
Substr(String,Int16,Int64), String Substr(String,Int16,Single),
String Substr(String,Int32), String Substr(String,Int32,Byte), String
Substr(String,Int32,Decimal), String Substr(String,Int32,Double),
String Substr(String,Int32,Int16), String Substr(String,Int32,Int32),
String Substr(String,Int32,Int64), String Substr(String,Int32,Single),
String Substr(String,Int64), String Substr(String,Int64,Byte), String
Substr(String,Int64,Decimal), String Substr(String,Int64,Double),

72 | Chapter 6 FDO Capabilities

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=05Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability 12345678 9ABC

String Substr(String,Int64,Int16), String Substr(String,Int64,Int32),
String Substr(String,Int64,Int64), String Substr(String,Int64,Single),
String Substr(String,Single), String Substr(String,Single,Byte),
String Substr(String,Single, Decimal), String Sub-
str(String,Single,Double), String Substr(String,Single,Int16), String
Substr(String,Single,Int32), String Substr(String,Single,Int64),
String Substr(String,Single, Single)

String Translate(String, String, String) + -+ - 4+ -+ o+ - -+ -
String Trim(String), String Trim(String, String) + -+ -+ -+ + - -+ -
String Upper(String) I
String Lower(String, String) e e e e e oo
String Upper(String, String) e e e e e oo

Miscellaneous Expression Functions

The following functions were not affected by the introduction of the Expression
Builder component in FDO 3.3.

Function Name Description

CLIp Returns a geometry that is the subset of the geometry argument
defined by the polygon specified by the coordinate arguments.
CLIP(BLOB,Double,Double,Double,Double)

MOSAIC Returns a geometry. MOSAIC(BLOB)

RESAMPLE Returns a geometry. RES-
AMPLE(BLOB,Double,Double,Double,Double,Int32,Int32)

Expression | 73

Function Name Description

SpatialExtent Returns a geometry. SpatialExtent(BLOB).

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05SGeo.MySQL, 4=05Geo.PostGIS, 5=0S-
Geo.SQLServerSpatial;, 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=05SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=20SGeo.WMS; C=05SGeo.OGR

Capability 1234567 89ABC
BLOB CLIP(BLOB,Double,Double,Double,Double) S e - e e+ - e - - -
BLOB RES- T

AMPLE(BLOB,Double,Double,Double,Double,Int32,Int32)

BLOB SpatialExtents(BLOB) Ce - o oo oo -

BLOB MOSAIC(BLOB) e e e e e - e - o

Filter

In C# you access the
0SGeo.FDO.Connections.Capabilities.IFilterCapabilities using the
IConnection object (connection.FilterCapabilities).

In C++ you access the FdoIFilterCapabilities using the IConnection object

(cormection—>GetFilterCapabilities ())

Capability Description

ConditionType_In Tests if the value of a specified data property is within a given
set of literal values.

ConditionType_Comparison Tests if one expression is equal, not equal, greater than, less
than, greater than or equal to, or less than or equal to another
expression.

ConditionType_Distance Tests whether the value of a geometric property is within or

beyond a specified distance of a literal geometric value.

74 | Chapter 6 FDO Capabilities

Capability

Description

ConditionType_Like

Tests whether the value of a specified data property matches
a specified pattern.

ConditionType_Null

Tests whether the value of a specified data property is null.

ConditionType_Spatial

Tests whether the value of a geometric property and a literal
geometric value satisfy the spatial relationship implied by the
operation.

DistanceOperations_Beyond

Tests whether the geometric property value lies beyond a
specified distance of a literal geometric value.

DistanceOperations_Within

Tests whetherthe geometric property value lies within a spe-
cified distance of a literal geometric value.

SpatialOperations_Contains

Tests whetherthe geometric property value spatially contains
the literal geometric value.

SpatialOperations_CoveredBy

Tests whether the geometric property value is covered by the
interior and boundary of the given geometry.

SpatialOperations_Crosses

Tests whetherthe geometric property value spatially crosses
the given geometry.

SpatialOperations_Disjoint

Tests whether the geometric property value is spatially disjoint
from the given geometry.

SpatialOperations_Envelopelntersects

Tests whether the envelope of the referenced geometric
property value spatially intersects the given geometry.

SpatialOperations_Equals

Tests whether the geometric property value is spatially equal
to the given geometry.

SpatialOperations_Inside

Tests whether the geometric property value is inside the in-
terior of the given geometry, not touching the boundary.

Filter | 75

Capability

Description

SpatialOperations_Intersects

Tests whether the geometric property value spatially intersects
the given geometry.

SpatialOperations_Overlaps

Tests whether the geometric property value spatially overlaps
the given geometry.

SpatialOperations_Touches

Tests whether the geometric property value spatially touches
the given geometry.

SpatialOperations_Within

Tests whether the geometric property value is spatially within
the given geometry.

SupportsNonLiteralGeometricOperations

Tests whether the spatial and distance operations can be ap-
plied between two geometric properties. Returns false if spatial
and distance operations can be applied only between a geo-
metric property and a literal geometry. Returns true if spatial
and distance operations can be applied

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial, 6=05Geo.Gdal, 7=05SGeo.SDF; 8=05SGeo.SHP; 9=0SGeo.WFS;
A=0S5Geo.WFS; B=20SGeo.WMS; C=05Geo.OGR

Capability

12345678 9ABC

SpatialOperations_Envelopelntersects, ConditionType_In, Condi- + + + + + + + + - - + +

tionType_Spatial

SpatialOperations_Intersects + 4+ + + + + + + - - + -
ConditionType_Null, ConditionType_Comparison, Condition- + + + + + - o+ + - - o+ o+
Type_Like

SpatialOperations_Inside + 4+ -+ 4+ + 4+ o+ - -+ -
SpatialOperations_Within + + - + - + + + - - + -
ConditionType_Distance e

76 | Chapter 6 FDO Capabilities

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;

A=05Geo.WFS; B=05Geo.WMS; C=05Geo.OGR

Capability 23 45678 9ABC
SpatialOperations_Disjoint, SpatialOperations_Contains + 4+ -+ - -+ - - - - -
SpatialOperations_CoveredBy, SpatialOperations_Crosses, Spa- + + - + - - - - - - - -
tialOperations_Touches, SpatialOperations_Equals, SpatialOper-

ations_Overlaps

DistanceOperations_Beyond, DistanceOperations_Within L T
SupportsNonLiteralGeometricOperations R

SupportsGeodesicDistance

Geometry

In C# you access the

0SGeo.FDO.Connections.Capabilities.IGeometryCapabilities using the
IConnection object (connection.GeometryCapabilities).

In C++ you access the FdoIGeometryCapabilities using the IConnection
object (connection—>GetGeometryCapabilities ()).

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05SGeo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;

A=0S5Geo.WFS; B=0SGeo.WMS; C=05SGeo.OGR

Capability

23 45678 9ABC

FdoDimensionality_XY

+ 4+ o+ + + o+

GeometryType_Polygon, GeometryComponentType_Linear- + + 4+ + -+ + + + -+
Ring
GeometryType_Point O+ 4+ o+ -+ o+ o+ -+ o+

Geometry | 77

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;
A=0S5Geo.WFS; B=205SGeo.WMS; C=05Geo.OGR

Capability 123 45678 9ABC

GeometryType_MultiLineString, GeometryType_MultiPoint, + + + + + -+ 4+ 4+ - -+
GeometryType_LineString

GeometryType_MultiPolygon + 4+ + 4+ o+ - o+ -+ - - ¥
GeometryComponentType_LineStringSegment + + - - 4+ -+ o+ o+ - -+
FdoDimensionality_M, FdoDimensionality_Z + + - + - - + + + - - -
GeometryComponentType_Ring e s
GeometryType_MultiGeometry e e L s
GeometryType_CurvePolygon, GeometryComponentType_Cir- - + - - + - + - + - - -

cularArcSegment, GeometryType_CurveString, Geometry-
Type_MultiCurvePolygon, GeometryType_MultiCurveString

Raster

In C# you access the
0SGeo.FDO.Connections.Capabilities.IRasterCapabilities ushlgthe
IConnection object (connection.RasterCapabilities).

In C++ you access the FdoIRasterCapabilities using the IConnection object

(connection->GetRasterCapabilities()).

Capability Description

SupportsRaster Indicates whether or not a provider supports the retrieval and
manipulation of image data.

SupportsSubsampling Indicates whether or not a provider supports the reduction of
the amount of detail and data in the image.

78 | Chapter 6 FDO Capabilities

Capability Description

SupportsStitching Indicates whether or not a provider supports the composition
of multiple raster images.

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05SGeo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=05SGeo.SHP; 9=05Geo.WFS;
A=0S5Geo.WFS; B=0SGeo.WMS; C=0SGeo.OGR

Capability 12345678 9ABC

SupportsRaster, SupportsSubsampling C e e e e e - - - -

SupportsStitching e e e e e e e oo

Schema

In C# you access the
0SGeo.FDO.Connections.Capabilities.ISchemaCapabilities ushlgthe
IConnection object (connection.SchemaCapabilities).

In C++ you access the FdoISchemaCapabilities using the IConnection object

(connection->GetSchemaCapabilities()).

Capability Description

AutoGenerated_* Indicates whether or not a provider supports auto gener-
ation of values for the data types represented by the as-
terisk: Boolean, Byte, DateTime, and Decimal.

ClassType_Class Indicates whether or not a provider supports the Class
type, which does not have a Geometry property.

ClassType_FeatureClass Indicates whether or not a provider supports the Class
type, which does have a Geometry property.

DataType_* Indicates whether or not a provider supports the spe-
cificdata type that replaces the *: BLOB, Boolean, Byte,

Schema | 79

Capability

Description

CLOB, DateTime, Decimal, Double, Int16, Int32, Int64,
Single, or String.

IdentityProperty_*

Indicates whether or not a provider supports the use of
the property types represented by the asterisk as identity
properties: BLOB, Boolean, Byte, DateTime, Decimal,
Double, Int16, Int32, Int64, Single, and String.

MaximumDecimalPrecision

Indicates whether or not a provider supports decimals up
to the specified number of digits in length.

MaximumDecimalScale

Indicates whether or not a provider supports decimals
with up to the specified number of digits to the right of
the decimal point.

ReservedCharactersForName

The set of characters which cannot be used in schema
element names.

SupportsAssociationProperties

Indicates whether or not a provider supports the associ-
ation property.

SupportsAutoldGeneration

Indicates whether or not a provider supports the automat-
ic generation of id property values.

SupportsCompositeld

Indicates whether or not a provider supports multiple
identity properties per class.

SupportsCompositeUniqueValueConstraints

Indicates whether or not a provider supports unique value
constraints on a set of columns.

SupportsDataStoreScopeUniqueldGeneration

Indicates whether or not a provider supports the automat-
ic generation of ID values that are unique for the entire
datastore, rather than just for a particular class.

SupportsDefaultValue

Indicates whether or not a provider supports the specific-
ation of default values for property definitions.

80 | Chapter 6 FDO Capabilities

Capability Description

SupportsExclusiveValueRangeConstraints Indicates whether or not a provider supports the setting
of minimums that the input data must greater than and
maximums that the input data must be less than.

SupportsinclusiveValueRangeConstraints Indicates whether or not a provider supports the setting
of minimums that the input data must greater than or
equal to and maximums that the input data must be less
than or equal to.

Supportsinheritance Indicates whether or not a provider supports class hier-
archies in the feature schema.

SupportsMultipleSchemas Indicates whether or not a provider supports the definition
of more than one feature schema in the data store.

SupportsNullValueConstraints Indicates whether or not a provider allows property values
to be null.
SupportsObjectProperties Indicates whether or not a provider supports object

properties. A class instance can contain an instance of
another class.

SupportsSchemaModification Indicates whether or not a provider supports the modific-
ation of a schema after its intitial creation.

SupportsSchemaOverrides Indicates whether or not a provider supports the overrid-
ing of the default rules for mapping feature schemas to
provider-specific physical schemas.

SupportsUniqueValueConstraints Indicates whether or not a provider supports requiring
that a column contain unique values.

SupportsValueConstraintsList Indicates whether or not a provider supports requiring
that a column contain values that belong to a value con-
straints list.

Schema | 81

Expressible as Boolean

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05SGeo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=05SGeo.SHP; 9=05SGeo.WFS;

A=0S5Geo.WFS; B=0SGeo.WMS; C=05SGeo.OGR

Capability

45

9

A B

ClassType_FeatureClass, DataType_String

IdentityProperty_Int32, DataType_Int32, DataType_DateTime,
ClassType_Class

DataType_Double

IdentityProperty_String

DataType_Int16, DataType_Single, IdentityProperty_Int16

SupportsAutoldGeneration, SupportsNullValueConstraints

SupportsSchemaOverrides

DataType_Decimal, DataType_Boolean

AutoGenerated_Int32

Supportsinheritance

DataType_Byte, IdentityProperty_Int64, DataType_Int64

IdentityProperty_Double, IdentityProperty_DateTime, Identi-
tyProperty_Single

SupportsMultipleSchemas

SupportsCompositeld

82 | Chapter 6 FDO Capabilities

1=0SGeo.ArcSDE; 2=0SGeo.KingOracle; 3=05Geo.MySQL, 4=0SGeo.PostGIS, 5=0S-
Geo.SQLServerSpatial; 6=0SGeo.Gdal, 7=0SGeo.SDF; 8=0SGeo.SHP; 9=05SGeo.WFS;

A=05Geo.WFS; B=05Geo.WMS; C=05Geo.OGR

Capability

8

9 AB C

ReservedCharactersForName

SupportsSchemaModification

MaximumDecimalPrecision, MaximumDecimalScale

IdentityProperty_Boolean, IdentityProperty_Decimal, Identi-
tyProperty_Byte

SupportsCompositeUniqueValueConstraints, SupportsUnique-
ValueConstraints

AutoGenerated_Int64, SupportsDefaultValue

SupportsAssociationProperties

DataType_BLOB

SupportsObjectProperties

SupportsDataStoreScopeUniqueldGeneration

SupportsValueConstraintsList, SupportsExclusiveValueRangeCon-
straints, SupportsinclusiveValueRangeConstraints

Not Expressible as a Boolean

Provider Reserved Charac- Maximum Decimal Maximum Decimal
ters for Name Precision Scale
ArcSDE . 38 38

Schema | 83

Provider Reserved Charac-
ters for Name

Maximum Decimal
Precision

Maximum Decimal
Scale

MySQL 65 65
PostGIS null 1000 1000
SQLServerSpa- 38 38
tial

SDF null null
SHP 255 255
ODBC 28 28

84 | Chapter 6 FDO Capabilities

Schema Management

This chapter describes how to create and work with schemas and explains some issues related
to schema management. For example, you can use the FDO feature schema to specify how
to represent geospatial features.

Schema Package

The FDO feature schema provides a logical mechanism for specifying how to
represent geospatial features. FDO providers are responsible for mapping the
feature schema to some underlying physical data store. The FDO feature schema
is based somewhat on a subset of the OpenGIS and ISO feature models. It
supports both non-spatial features and spatial features.

The Schema package contains a collection of classes that define the logical
feature schema. These classes can be used to set up a feature schema and to
interrogate the metadata from a provider using an object-oriented structure.
The logical feature schema provides a logical view of geospatial feature data that
is fully independent from the underlying storage schema. All data operations
in FDO are performed against the classes and relationships defined by the logical
feature schema. For example, different class types in the feature schema are used
to describe different types of geospatial objects and spatial features.

Base Properties

All classes in the feature schema support the concept of base properties, which
are properties that are pre-defined either by the FDO API or by a specific FDO
feature provider. For example, all classes in the schema have two base properties:
ClassName and SchemaName. These properties can be used to query across an
inheritance hierarchy or to process the results of heterogeneous queries. FDO

85

feature providers can also predefine base properties. The following base
properties are predefined by the FDO API:

Property Name Required Description

SchemaName Y Name of the schema to which objects of the class
belong; read-only string.

ClassName Y Name of the class that defines the object; read-only
string.

RevisionNumber N Revision number of the object; read-only 64-bit in-
teger.

NOTE Some providers may use this property to
support optimistic locking.

Cross-Schema References

Some FDO feature providers may support multiple schemas. For these providers,
the feature schema supports the concept of cross-schema references for classes.
This means that a class in one schema may derive from a class in another
schema, relate to a class in another schema, or contain an object property
definition that is based on a class in another schema.

Parenting in the Schema Classes

The feature schema object model defined in the FDO API supports full
navigation through parenting. That is, once a schema element is added to an
FdoFeatureSchema class, it can navigate the object hierarchy upward to the
root FdoFeatureSchema and, from there, to any other element in the feature
schema. This parenting support is fully defined in the FdoSchemaElement
abstract base class.

When inserting features that have object collections, the parent object instance
must be identified when inserting the child objects (for example, a parent
class “Road” has an object property called “sidewalks” of type “Sidewalk”).
For more information, see Data Maintenance on page 119.

Physical Mappings

Each feature provider maps the logical feature schema to an underlying
physical data store. Some feature providers may provide some level of control

86 | Chapter 7 Schema Management

over how the logical schema gets mapped to the underlying physical storage.
For example, an RDBMS-based feature provider may allow table and column
names to be specified for classes and properties. Since this is entirely
provider-dependent, the FDO API simply provides abstract classes for passing
physical schema and class mappings to the provider
(FdoPhysicalSchemaMapping, FdoPhysicalClassMapping,
FdoPhysicalPropertyMapping, and FdoPhysicalElementMapping, respectively).
The implementation of these abstract classes is up to each feature provider.

Schema Mappings

When a provider connects to a data source that it did not create and does a
describe schema command, it will map FDO data types to the physical entites
contained in the data source. This mapping is called the default schema
mapping or alternatively, the physical to logical schema mapping.

When reverse engineering an existing schema, FDO uses the following rules
to select the column(s) to use as the identity property:

1 Use the primary key.
2 Use a unique index.

3 Treat the data as read-only

NOTE When reverse engineering a view, FDO will apply rules 1 and 2 to the view
and then, if necessary, to the base tables.

NOTE If FDO detects more than one unique index, it calculates a weight for each
index and selects the lightest one. The weight of each index is the sum of the
weights of its columns. Column weight depends on column type as follows. Indexes
with Blobs or Clobs are not chosen. If FDO picks a multi-column index as the
unique index, it creates an identity property for each column in the index.

m 1 for Boolean or Byte

m 2 for Intl6

m 4 for Int32

m 8 for Int64, Decimal, Double, or Float
B 50 for DateTime

|

length for String

Schema Mappings | 87

After you use FDO to create a feature schema, you can use external means to
access the data store to inspect what native data types FDO uses for its logical
types. This mapping is called the logical to physical schema mapping.

The following mappings have been documented in the provider appendices.

B physical to logical schema mappings for ODBC connections to a Microsoft
Access database, an Excel spreadsheet, and a text file

B physical to logical and logical to physical schema mappings for Oracle,
MySQL, Sql Server, and Sql Server Spatial

The mechanism for overriding the default schema mapping is described in
the next topic. Sample code is located in the FDO Cookbook chapter of this
document.

Schema Overrides

Using schema overrides, FDO applications can customize the mappings
between Feature (logical) Schemas and the Physical Schema of the provider
data store.

Schema overrides are provider-specific because different FDO providers support
FDO data stores with widely different physical formats. Therefore, the types
of schema mappings in these overrides also vary between providers. For
example, an RDBMS-type provider might provide a mapping to index a set of
columns in a class table. However, other providers would not necessarily be
able to work with the concept of an index. For information about schema
overrides support by a specific provider, see the appropriate appendix in this
document and The Essential FDO.

NOTE Some providers support only default schema mappings.

Working with Schemas

There are three primary operations involved with schema management:
B Creating a schema
B Describing a schema

B Modifying a schema

88 | Chapter 7 Schema Management

Creating a Schema

The following basic steps are required to create a schema (some steps are
optional; some may be done in an alternate order to achieve the same result):

Use the FdoFeatureSchema::Create(“SchemaName”, “FeatureSchema
Description”) method to create a schema.

Use the FdoFeatureSchema::GetClasses() method to return a class collection.

Use the FdoClass::Create(“className”, “classDescription”) or
”n o u

FdoFeatureClass::Create(“className”, “classDescription”) method to create
FdoClass or FdoFeatureClass type objects.

Use the FdoClassCollection::Add(class) method to add FdoClass or
FdoFeatureClass objects to the class collection.

Use the FdoGeometricPropertyDefinition::Create(“name”, “Description”)
method to create FdoGeometryProperty.

Use the FdoDataPropertyDefinition::Create(“name”, “Description”) method
to create FdoDataProperty.

”n ou

Use the FdoObjectPropertyDefinition::Create(“name”, “Description”)
method to create FdoObjectProperty.

Use the FdoClassDefinition::GetProperties() and Add(property) methods
to add property to class definition.

Use the FdoIApplySchemaCommand::SetFeatureSchema(feature schema)
method to set the schema object for the IFdoApplySchemaCommand.

Use the FdoAssociationPropertydefinition class to represent the association
between two classes. The class of the associated class must already be
defined in the feature schema and cannot be abstract.

Use the FdoIApplySchemaCommand::Execute() method to execute changes
to the feature schema.

For an example of schema creation, see Example: Creating a Feature Schema
on page 111.

Use the FdoClassDefinition::GetldentityProperties() and Add(Property Object)
methods to set the property as FdoClass or FdoFeatureClass Identifier. FDO
allows multiple Identifiers for both types of classes, although Identifiers have
slight differences in both cases.

Working with Schemas | 89

FDOFeatureClass

FdoFeatureClass is a class that defines features. In the case of GIS, they would
often be spatial features, having some sort of geometry associated with them.
In most providers, FdoFeatureClass requires a unique identifier to distinguish
the features.

However, there are identifiers only if no base class exists. If the base class has
an identifier, the child class does not have one. You cannot set an identifier

to the child class. Any class definition that has a base class cannot also have
any identity properties because it inherits from the base class.

Therefore, you cannot send an identifier when a feature class is a child since
it always inherits the identifier from the base class.

FDOClass

This class is used for non-spatial data. It can act as a stand-alone class, where
it would have no association with any other class, or if the FdoClass is being
used as an ObjectProperty, it can be used to define properties of some other
FdoClass or FdoFeatureClass.

ObjectProperty Types

ObjectProperties have the following types:
W Value

B Collection

B OrderedCollection

The Value ObjectProperty type has a relationship of one-to-one, providing a
single value for each property.

The Collection and OrderedCollection ObjectProperty types have a
one-to-many relationship, where many ObjectProperties may be associated
with one property. Ordered Collections can be stored in an ascending or
descending order

90 | Chapter 7 Schema Management

At least one Identifier will be required if the FdoClass is to be used as a
stand-alone Class.

m All Identifiers for FdoDataType_Int64 must not be Read-Only, since none
of these will be an auto-generated property value.

B [f creating multiple Identifiers, all Identifiers must be set to NOT NULL.

Non-Feature Class Issues

A non-feature class in FDO can be created as a stand-alone class, a contained
class, or both. As a contained class, it defines a property of another class or
feature class (see FdoFeatureClass and FdoClassType Global Enum). How this
non-feature class is created affects the way the data is inserted, queried, and
updated.

Stand-alone Class

This type of class stores non-feature data (for example, manufacturers). The
FdoClassType_Class must be created with one or more identity properties (see
FdoObjectPropertyDefinition), which is required in order that the class has a
physical container (that is, a table in the RDBMS) associated with it. If the
class is created without specifying an IdentityProperty, only the definition is
stored in the metadata, which prevents any direct data inserts.

Contained Class

This type of class stores non-feature data that defines a property of another
class or feature class (for example, Sidewalk could be a property of a Road
feature class; the Sidewalk class defines the Road.Sidewalk property). In this
case, the FdoClassType_Class does not need to be created with one or more
identity properties, although it can be.

Class With IdentityProperty Used as ObjectProperty

This type of class reacts like a stand-alone class; however, with this type, it is
possible to do direct data inserts. It can also be populated through a container
class (for example, Road.Sidewalk) since it defines an object property (see
FdoObjectPropertyDefinition). If this class is queried directly, only the data
inserted into the class as a stand-alone is returned. The data associated with
the ObjectProperty can only be queried through the container class (for
example, Road.Sidewalk).

Non-Feature Class Issues | 91

Class Without a Defined IdentityProperty Used as ObjectProperty

Because this class has no defined IdentityProperty, it can only be populated
through the container class (for example, Road.Sidewalk) since it defines
ObjectProperty. This class cannot be queried directly. The data associated with
the object property can only be queried through the container class (for
example, Road.Sidewalk). As an object property, it is defined as one of the
following:

B Value type property. Does not need any identifier since it has a one-to-one
relationship with the container class.

B Collection type property. Requires a local identifier, which is an identifier
defined when creating the ObjectProperty object.

B Ordered Collection type property. Requires a local identifier, which is an
identifier defined when creating the ObjectProperty object.

When defining either a Collection or Ordered Collection type ObjectProperty,
you must set an IdentityProperty attribute for that object property. This
ObjectClass.IdentityProperty acts only as a local identifier compared to the
IdentityProperty set at the class level. As a local identifier, it acts to uniquely
identify each item within each collection (for example, if the local identifier
for Road.Sidewalk is Side, there can be multiple sidewalks with Side="Left”
but only one per Road).

Describing a Schema

Use the FdoIDescribeSchema::Execute function to retrieve an
FdoFeatureSchemaCollection in order to obtain any information about existing
schema(s). The FdoFeatureSchemaCollection consists of all FdoFeatureSchemas
in the data store and can be used to obtain information about any schema
object, including FdoFeatureSchema, FdoClass, FdoFeatureClass, and their
respective properties. The following functions return the main collections
required to obtain information about all schema objects:

B FdoFeatureSchema::GetClasses method obtains FdoClass and
FdoFeatureClasses.

m FdoClassDefinition::GetProperties method obtains a
FdoPropertyDefinitionCollection.

B FdoClassDefinition::GetBaseProperties method obtains a
FdoPropertyDefinitionCollection of the properties inherited from the base
classes.

92 | Chapter 7 Schema Management

NOTE Even if your schema has no base classes (inheritance), all classes will inherit
some properties from system classes.

Use these functions throughout the application to obtain any information
about schema objects. For example, in order to insert data into a class, you
must use these functions to determine what data type is required. Description
of the data is separate from actions.

The example in the following link is a simple function that shows how to use
FdolDescribeSchema and loop through the schema and class containers to
search for duplicate class names. It searches all schemas to ensure that the
class name does not exist in any schema in the data store. Class names must
be unique across the entire FDO database.

For a schema description example, see Example: Describing a Schema and
Writing It to an XML File on page 114 NO LABEL .

FDO Schema Element Class Diagram

Non-Feature Class Issues | 93

Modifying Models

Add schema elements to a model by inserting them into the appropriate
collection.

Elements are removed from the model by using either of the following
methods:

B Call the FdoSchemaElement::Delete() method. This flags the element for
deletion when the changes are accepted (generally through
FdoIApplySchema), but the element remains a member of all collections
until that time.

B Remove the element from the appropriate collection via the
FdoSchemaCollection::Remove() or FdoSchemaCollection::RemoveAt()
methods. This immediately disassociates the element from the collection.

Schema Element States

All elements within the model maintain a state flag. This flag can be retrieved
by calling FdoSchemaElement::GetElementState(), but it cannot be directly
set. Instead, its state changes in reaction to the changes made to the model:

B Unchanged. When a schema model is retrieved via FdoIDescribeSchema,
all elements are initially marked Unchanged.

B Detached. Removing an element from an owning collection sets its state
to Detached.

B Deleted. Calling the Delete() method on an element sets its state to Deleted.
B Added. Placing an element within a collection marks the element as Added.
B Modified. When adding or removing a sub-element, such as a property

element from a class, the class element state will be changed to Modified.

Additionally, when an element that is contained by another element is changed
in any way, the containing element is also marked as Modified. So, for example,
if a new value is added to the SchemaAttributeDictionary of the “Class3”
element in our model, both the “Class3” FdoClass object and the
FdoFeatureSchema object would be marked as Modified.

94 | Chapter 7 Schema Management

The state flags are maintained until the changes are accepted, that is, when
IApplySchema is executed. At that time, all elements marked Deleted are
released and all other elements are set to Unchanged.

NOTE When you remove an element from an owning collection, its state is marked
as Detached. All collections currently in FDO are owning collections, except for
one, the collections FdoClassDefinition::GetldentityProperties().

Rollback Mechanism

The FdoFeatureSchema contains a mechanism that allows you to “roll back”
model changes to the last accepted state. For example, a model retrieved via
FdolDescribeSchema can have classes added, attributes deleted, or names and
default values changed. All of these changes are thrown out and the model

returned to its unmodified state by calling FdoFeatureSchema::RejectChanges().

The converse of this operation is the FdoFeatureSchema::AcceptChanges()
method, which removes all of the elements with a status of Deleted and sets
the state flag of all other elements to Unchanged. Generally, this method is
only invoked by FDO provider code after it has processed an
FdolApplySchema::Execute() command. Normal FDO clients should not call
this method directly.

FDO XML Format

FDO feature schemas can be written to an XML file. The FdoFeatureSchema
and FdoFeatureSchemacCollection classes support the FdoXmlSerializable
interface. The sample code shows an FdoFeatureSchema object calling the
WriteXml() method to generate an XML file containing the feature schema
created by the sample code.

FDO feature schemas can also be read from an XML file. The
FdoFeatureSchemacCollection class supports the FdoXmlDeserializable interface.
The sample code shows an FdoFeatureSchemacCollection object calling the
ReadXml() method to read a set of feature schemas into memory from an XML
file. The code shows the desired schema being retrieved from the collection
and applied to the data store.

The XML format used by FDO is a subset of the Geography Markup Language
(GML) standardized by the Open GIS Consortium (OGC). One thing shown
in the sample code is a round-trip conversion from FDO feature schema to

GML schema back to FDO feature schema. To accomplish this round-trip, the

Rollback Mechanism | 95

ReadXml() method supports a superset of the GML that is written by the
WriteXml() method.

The following table specifies the mapping of FDO feature schema elements
to GML elements and attributes. This mapping is sufficient to understand the
XML file generated from the schema defined by the sample code. It also
provides a guide for writing a GML schema file by hand. This file can then be
read in and applied to a data store. For more information, see Example:
Creating a Schema Read In from an XML File on page 114.

Another form of round-trip translation would be from a GML schema produced
by another vendor’s tool to an FDO feature schema, and then back to a GML
schema. However, the resemblance the of resulting GML schema to the original
GML schema might vary from only roughly equivalent to being exactly the
same.

Map FDO Element to GML Schema Fragment
FDO Element GML Schema Fragment

FeatureSchema <xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
targetNamespace="http://<customer url>/<FeatureSchemaN
ame>"
xmlns:fdo="http://fdo.osgeo.org/isd/schema”
xmlns:gml="http://www.opengis.net/gml”
xmlns:<FeatureSchemaName>="http://<customer url>/<Fea
tureSchemaName>"
elementFormDefault="qualified”

attributeFormDefault="unqualified”

{ see <MetaData> }

{ optional xs:import element to enable schema validation

<xs:import namespace="http://fdo.osgeo.org/schema"
schemaLocation="<FDO SDK Install Location>/docs/XmlS
chema/FdoDocument .xsd" />

}

{ <one xs:element and/or xs:complexType per class> }
</xs:schema>

96 | Chapter 7 Schema Management

FDO Element

GML Schema Fragment

ClassDefinition
(with identity prop-
erties)

<xs:element name="<className>"
type="<className>Type”
abstract="<true | false>”

substitutionGroup="gml: Feat

<xs:key name="<className>Key
<xs:selector xpath=".//<cl
<xs:field xpath="<identity

<xs:field xpath="..."/>
<xs:field xpath="<identity
</xs:key>

</xs:element>

ure”
s
assName>" />

PropertylName>"/>

Property<n>Name>"

FeatureClass

<xs:element ...see ClassDefini
ties)...</xs:element>

tion (with identity proper

<xs:complexType name="<className>Type”

abstract="<true | false>"/>

{ see FeatureClass.GeometryP

{ see <MetaData> }
<xs:complexContent>
<xs:extension base="{baseC
{baseClass.schema.name}:

‘gml:AbstractFeatureType

<xs:sequence>
{ list of properties;
Property }
</xs:sequence>
</xs:extension>
</xs:complexContent>

</xs:complexType>

roperty }

lass} ?

{baseClass.name}

row

see DataProperty, Geometric

FDO XML Format | 97

FDO Element GML Schema Fragment

FeatureClass. Geo- <!-- these attributes belong to the xs:complexType element
metryProperty —-—>
fdo:geometryName="<geometryPropertyName>"
fdo:geometricTypes="<list of FdoGeometricTypes>"
fdo:geometryReadOnly="<true | false>"
fdo:hasMeasure="<true | false>"

fdo:hasElevation="<true false>”

fdo:srsName="<spatialContextName>"/>

DataProperty <l--

(decimal or string) minOccurs attribute generated only if value is 1
default attribute generated only if a default value exists
fdo:readOnly attribute generated only if value is true

——>

<xs:element name="<propertyName>"
minOccurs="{isNullable 2 0 : 1}”
default="<defaultValue>"
fdo:readOnly="<true | false>"

{ see <MetaData> }
<xs:simpleType>

{ see DataType String or DataType Decimal }
</xs:simpleType>

</xs:element>

DataProperty (oth- <xs:element name="<propertyName>"
er type) type="<datatype>”
minOccurs="{isNullable ? 0 : 1}”

default="<defaultvValue>”
fdo:readOnly="<true | false>”

{ see <MetaData> }
</xs:element>

DataType String <xs:restriction base="xs:string”>
<xs:maxLength value="<length>"/>
</xs:restriction>

98 | Chapter 7 Schema Management

FDO Element GML Schema Fragment

DataType Decimal <xs:restriction base="xs:decimal”>
<xs:totalDigits value="<precision>"/>
<xs:fractionDigits value="<scale>"/>

</xs:restriction>

GeometricProperty <xs:element name="<propertyName>"

(not a defining Fea- type="gml:AbstractGeometryType”

tureClass Geo- fdo:geometryName="<propertyName>"

metryProperty) fdo:geometricTypes="<list of FdoGeometricTypes>"
fdo:geometryReadOnly="<true | false>"
fdo:hasMeasure="<true | false>"
fdo:hasElevation="<true | false>”

fdo:srsName="<spatialContextName>"/>

{ see <MetaData> }

</xs:element>

FDO XML Format | 99

FDO Element

GML Schema Fragment

MetaData

<!-- the pattern referenced in the xs:schema element for
FeatureSchema-->
<xs:annotation>
<xs:documentation>{description arg to static FdoFeatureS
chema: :Create () }</xs:documentation>
</xs:annotation>
<!-- the pattern referenced in the xs:element element for
DataProperty -->
<xs:annotation>
<xs:documentation>{description arg to static FdoDataProp
ertyDefinition::Create () }</xs:documentation>
</xs:annotation>
<!--
the pattern referenced in the xs:element element for a
non-feature-defining
GeometricProperty
-—>
<xs:annotation>
<xs:documentation>{description arg to static FdoGeomet
ricPropertyDefinition: :Create () }</xs:documentation>
</xs:annotation>
<!-- the pattern referenced in the xs:complexType element
for FeatureClass -->
<xs:annotation>
<xs:documentation>{description arg to static FdoFeature
Class::Create () }</xs:documentation>
<xs:appinfo source="<uri>"/>
<xs:documentation>{description arg to static FdoGeomet
ricPropertyDefinition: :Create () }</xs:documentation>

</xs:annotation>

Map FDO Datatype to GML Type

FDO Datatype GML Type
xs:boolean
fdo:Byte

DateTime xs:dateTime

100 | Chapter 7 Schema Management

FDO Datatype GML Type

Double xs:double

Int16 fdo:Int16

Int32 fdo:Int32

Int64 fdo:Int64

Single xs:float

BLOB xs:base64Binary
CLOB xs:string

Creating and Editing a GML Schema File

The sample in this section illustrates the creation of a GML schema file
containing the definition of an FDO feature schema that contains one feature.
The name of this file will have the standard XML schema extension name,
.xsd. This means that it contains only one schema and that the root element
is xs:schema. The ReadXml() method will take a filename argument whose
extension is either .xsd or .xml. In the latter case, the file could contain many
schema definitions. If it does, each schema is contained in an xs:schema
element, and all xs:schema elements are contained in the fdo:DataStore
element. If there is only one schema in the .xml file, then the fdo:DataStore
element is not used, and the root element is xs:schema.

You may want to validate the schema that you create. To do so, you must
include the optional xs:import line specified in the GML schema fragment
for FeatureSchema.

The sample feature implements a table definition for the Buildings feature in
the Open GIS Consortium document 98-046r1. This table definition is
expressed in an XML format on page 14 of the document and is reproduced
as follows:

Creating and Editing a GML Schema File | 101

<ogc-sfsgl-table>
<table-definition>
<name>buildings</name>
<column-definition>
<name>fid</name>
<type>INTEGER</type>
<constraint>NOT NULL</constraint>
<constraint>PRIMARY KEY</constraint>
</column-definition>
<column-definition>
<name>address</name>
<type>VARCHAR (64) </type>
</column-definition>
<column-definition>
<name>position</name>
<type>POINT</type>
</column-definition>
<column-definition>
<name>footprint</name>
<type>POLYGON</type>
<column-definition>
</table-definition>

Add GML for the FDO Feature Schema

Start with the skeleton GML for an FDO Feature Schema with the <MetaData>
reference replaced by the valid pattern:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
targetNamespace="http://<customer url>/<FeatureSchemaName>"
xmlns:fdo="http://fdo.osgeo.org/schema”
xmlns:gml="http://www.opengis.net/gml”
xmlns:<FeatureSchemaName>="http://<customer url>/<FeatureSchema

Name>"
elementFormDefault="qualified”
attributeFormDefault="unqualified”

<xs:annotation>
<xs:documentation>
{description arg to static FdoFeatureSchema::Create() }
</xs:documentation>
</xs:annotation>
{ <one xs:element and/or xs:complexType per class> }

</xs:schema>

102 | Chapter 7 Schema Management

For <customer_url> substitute “fdo_customer”. For <FeatureSchemaName>
substitute “OGC980461FS”, and for {description arg ... } substitute “OGC
Simple Features Specification for SQL.”

Add GML for an FDO Feature Class
Start with the GML that is already written and add the skeleton for an FDO

Feature Class, which includes the skeleton for a class definition with identity
properties. The <MetaData> is replaced with the valid pattern.

Creating and Editing a GML Schema File | 103

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
targetNamespace="http://fdo customer/0GC980461FS”
xmlns:fdo="http://fdo.osgeo.org/schema”
xmlns:gml="http://www.opengis.net/gml”
xmlns:0GC980461FS="http://fdo_customer/OGCI80461FS”
elementFormDefault="qualified”

attributeFormDefault="unqualified”

<xs:annotation>
<xs:documentation>OGC Simple Features Specification for
SQL</xs:documentation>
</xs:annotation>
<xs:element name="<className>"
type="<className>Type”
abstract="<true | false>”

substitutionGroup="gml: Feature”

<xs:key name="<className>Key”>
<xs:selector xpath=".//<className>"/>
<xs:field xpath="<identityPropertylName>"/>
</xs:key>
</xs:element>
<xs:complexType name="<className>Type”
abstract="<true | false>"/>
fdo:geometryName="<geometryPropertyName>"
fdo:geometricTypes="<list of FdoGeometricTypes>"
fdo:geometryReadOnly="<true | false>"
fdo:hasMeasure="<true | false>”
fdo:hasElevation="<true | false>”

fdo:srsName="<spatialContextName>"/>

<xs:annotation>
<xs:documentation>{description arg to static
FdoFeatureClass: :Create () }</xs:documentation>
<xs:appinfo source="<uri>"/>
<xs:documentation>{description arg to static
FdoGeometricPropertyDefinition: :Create() }
</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="{baseClass} ?
{baseClass.schema.name}: {baseClass.name}

W

‘gml:AbstractFeatureType’

104 | Chapter 7 Schema Management

<xXs:sequence>

{ list of properties; see DataProperty, GeometricProperty

</xs:sequence>
</xs:extension>
</xs:complexContent>

</xs:complexType>

</xs:schema>

You can make the following changes:

For <className> substitute “buildings”.
Set the value of the xs:element abstract attribute to false.

For <identityPropertyName> substitute “fid”. A data property whose name
is “fid” will be added.

Set the value of the xs:complexType abstract attribute to false.
For <geometryPropertyName> substitute “footprint”.
For <list of FdoGeometricTypes> substitute “surface”.

Set the values of fdo:geometryReadOnly, fdo:hasMeasure, and
fdo:hasElevation to false.

For <spatialContextName> substitute “SC_0".

For {description arg to FdoFeatureClass::Create()} substitute “OGC 98-046r1
buildings”.

For <uri> substitute “http://fdo.osgeo.org/schema”.

For {description arg to FdoGeometricPropertyDefinition::Create()} substitute
“a polygon defines a building perimeter”.

This class has no base class so set the value of the xs:extension base attribute
to ‘gml:AbstractFeatureType’.

Add GML for Property Definitions

An integer data property whose name is “fid” will be added. This property is
already identified as an identity property in the xs:key element. A string data
property whose name is “name” and a geometry property whose name is
“position” will also be added.

Creating and Editing a GML Schema File | 105

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
targetNamespace="http://fdo customer/0GC980461FS”
xmlns:fdo="http://fdo.osgeo.org/schema”
xmlns:gml="http://www.opengis.net/gml”
xmlns:0GC980461FS="http://fdo_customer/OGCI80461FS”
elementFormDefault="qualified”

attributeFormDefault="unqualified”

<xs:annotation>
<xs:documentation>OGC Simple Features Specification for
SQL</xs:documentation>
</xs:annotation>
<xs:element name="buildings”
type="buildingsType”
abstract="false”

substitutionGroup="gml: Feature”

<xs:key name="buildingsKey”>
<xs:selector xpath=".//buildings”/>
<xs:field xpath="fid”/>
</xs:key>
</xs:element>
<xs:complexType name="buildingsType”
abstract="false”/>
fdo:geometryName="footprint”
fdo:geometricTypes="surface”
fdo:geometryReadOnly="false”
fdo:hasMeasure="false”
fdo:hasElevation="alse”
fdo:srsName="3C _0”/>

<xs:annotation>
<xs:documentation>0OGC 98-046rl1 buildings
</xs:documentation>
<xs:appinfo source="http://fdo.osgeo.org/schema”/>
<xs:documentation>a polygon defines the perimeter of a
building</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="gml:AbstractFeatureType"“
>
<xs:sequence>

<xs:element name="<propertyName>"

106 | Chapter 7 Schema Management

type="<datatype>"
minOccurs="{isNullable ? 0 : 1}”
default="<defaultValue>"
fdo:readOnly="<true | false>”

<xs:annotation>
<xs:documentation>{description arg to static
FdoDataPropertyDefinition::Create ()}
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="<propertyName>"
minOccurs="{isNullable ? 0 : 1}”
default="<defaultValue>”
fdo:readOnly="<true | false>”

<xs:annotation>
<xs:documentation>{description arg to static
FdoDataPropertyDefinition::Create () }
</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:string”>
<xs:maxLength value="<length>"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="<propertyName>"
ref="gml: Geometry”
fdo:geometryName="<propertyName>"
fdo:geometricTypes="<list of FdoGeometricTypes>"
fdo:geometryReadOnly="<true | false>"
fdo:hasMeasure="<true | false>”
fdo:hasElevation="<true | false>”

fdo:srsName="<spatialContextName>"/>

<xs:annotation>
<xs:documentation>{description arg to static
FdoGeometricPropertyDefinition: :Create() }
</xs:documentation>
</xs:annotation>
</xs:element>

</xs:sequence>

Creating and Editing a GML Schema File | 107

</xs:extension>
</xs:complexContent>
</xs:complexType>

</xs:schema>

You can make the following changes:

For the first data property <propertyName> substitute “fid”.
For the first data property <dataType> substitute “fdo:int32”.

Do not include the minOccurs or default attributes because the value of
minQOccurs is 0, which is the default, and there is no <defaultValue>.

Set the fdo:readOnly attribute for “fid” to false.
Set the content for xs:documentation for “fid” to “feature id”.
For the second data property <propertyName> substitute “address”.

Do not include the minOccurs or default attributes because the value of
minOccurs is 0, which is the default, and there is no <defaultValue>.

Set the fdo:readOnly attribute for “name” to false.

Set the content for xs:documentation for “address” to “address of the
building”.

For <length> substitute “64”.
For the geometry property <propertyName> substitute “position”.
For <list of FdoGeometricTypes> substitute “point”.

Set the values of fdo:geometryReadOnly, fdo:hasMeasure, and
fdo:hasElevation to false.

For <spatialContextName> substitute “SC_0".

For {description arg to FdoGeometricPropertyDefinition::Create()} substitute
“position of the building”.

The Final Result

After all the required substitutions, the GML for the schema containing the
Buildings feature is as follows:

108 | Chapter 7 Schema Management

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
targetNamespace="http://fdo customer/0GC980461FS”
xmlns:fdo="http://fdo.osgeo.org/schema”
xmlns:gml="http://www.opengis.net/gml”
xmlns:0GC980461FS="http://fdo_customer/OGCI80461FS”
elementFormDefault="qualified”

attributeFormDefault="unqualified”

<xs:annotation>
<xs:documentation>OGC Simple Features Specification for
SQL</xs:documentation>
</xs:annotation>
<xs:element name="buildings”
type="buildingsType”
abstract="false”

substitutionGroup="gml: Feature”

<xs:key name="buildingsKey”>
<xs:selector xpath=".//buildings”/>
<xs:field xpath="fid”/>
</xs:key>
</xs:element>
<xs:complexType name="buildingsType”
abstract="false”/>
fdo:geometryName="footprint”
fdo:geometricTypes="surface”
fdo:geometryReadOnly="false”
fdo:hasMeasure="false”
fdo:hasElevation="false”
fdo:srsName="SC _0”/>

<xs:annotation>
<xs:documentation>0OGC 98-046rl1 buildings
</xs:documentation>
<xs:appinfo source="http://fdo.osgeo.org/schema”/>
<xs:documentation>a polygon defines the perimeter of a
building</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="gml:AbstractFeatureType"“
>
<xs:sequence>

<xs:element name="fid”

Creating and Editing a GML Schema File | 109

type="fdo:int32”
fdo:readOnly="false”

<xs:annotation>
<xs:documentation>feature id
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="address”
fdo:readOnly="false”

<xs:annotation>
<xs:documentation>address of the building
</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:string”>
<xs:maxLength value="64"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="position”
ref="gml: Geometry”
fdo:geometryName="position”
fdo:geometricTypes="point”
fdo:geometryReadOnly="false”
fdo:hasMeasure="false”
fdo:hasElevation="false”
fdo:srsName="3C_0"/>

<xs:annotation>
<xs:documentation>position of the building</xs:docu
mentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:schema>

110 | Chapter 7 Schema Management

Schema Management Examples

Example: Creating a Feature Schema

The following sample code creates an FdoFeatureSchema object called
“SampleFeatureSchema.” The schema contains one class, which has three
properties. The class and its properties conform to the table definition for the
Lakes feature in the Open GIS Consortium document 98-046r1. This table
definition is expressed in an XML format on page 10 of the document and is
reproduced as follows:

<ogc-sfsgl-table>
<table-definition>
<name>lakes</name>
<column-definition>
<name>fid</name>
<type>INTEGER</type>
<constgraint>NOT NULL</constraint>
<constraint>PRIMARY KEY<constraint>
</column-definition>
<column-definition>
<name>name</name>
<type>VARCHAR (64) </type>
</column-definition>
<column-definition>
<name>shore</name>
<type>POLYGON</type>
</column-definition>
</table-definition>

The table definition whose name is “lakes” is mapped to an FdoFeatureClass
object called “SampleFeatureClass.” The column definition whose name is
“fid” is mapped to an FdoDataPropertyDefinition object called
“SampleldentityDataProperty.” The column definition whose name is “name”
is mapped to an FdoDataPropertyDefinition object called
“SampleNameDataProperty.” The column definition whose name is “shore”
is mapped to an FdoGeometricPropertyDefinition object called
“SampleGeometricProperty.”

Schema Management Examples | 111

// Create the ApplySchema command

FdoPtr<FdoIApplySchema> sampleApplySchema;

sampleApplySchema = (FdoIApplySchema *)
connection->CreateCommand (FdoCommandType ApplySchema) ;

// Create the feature schema

FdoPtr<FdoFeatureSchema> sampleFeatureSchema;

sampleFeatureSchema = FdoFeatureSchema: :Create (L"SampleFeatureS

chema", L"Sample Feature Schema Description");

// get a pointer to the feature schema's class collection

// this object is used to add classes to the schema

FdoPtr<FdoClassCollection> sampleClassCollection;

sampleClassCollection = sampleFeatureSchema->GetClasses () ;

// create a feature class, i.e., a class containing a geometric

// property set some class level properties

FdoPtr<FdoFeatureClass> sampleFeatureClass;

sampleFeatureClass = FdoFeatureClass::Create (L"SampleFeatureClass",
L"Sample Feature Class Description");

sampleFeatureClass—->SetIsAbstract (false);

// get a pointer to the feature class's property collection

// this pointer is used to add data and other properties to the

class

FdoPtr<FdoPropertyDefinitionCollection> sampleFeatureClassProper

ties;

sampleFeatureClassProperties = sampleFeatureClass->GetProperties();

// get a pointer to the feature schema's class collection

// this object is used to add classes to the schema

FdoPtr<FdoClassCollection> sampleClassCollection;

sampleClassCollection = sampleFeatureSchema->GetClasses();

// get a pointer to the feature class's identity property collec

tion

// this property is used to add identity properties to the feature

// class

FdoPtr<FdoDataPropertyDefinitionCollection> sampleFeatureClassId

entityProperties;

sampleFeatureClassIdentityProperties = sampleFeatureClass-

>GetIdentityProperties () ;

// create a data property that is of type Int32 and identifies

// the feature uniquely

FdoPtr<FdoDataPropertyDefinition> sampleldentityDataProperty;

sampleIdentityDataProperty = FdoDataPropertyDefinition::Cre

ate (L"SampleIdentityDataProperty", L"Sample Identity Data Property
Description");

sampleIdentityDataProperty->SetDataType (FdoDataType Int32);

112 | Chapter 7 Schema Management

sampleIdentityDataProperty->SetReadOnly (false);
sampleIdentityDataProperty->SetNullable (false);
sampleIdentityDataProperty->SetIsAutoGenerated (false);

// add the identity property to the sampleFeatureClass
sampleFeatureClassProperties->Add (sampleIdentityDataProperty) ;
sampleFeatureClassIdentityProperties->Add (sampleIdentityDataProp
erty);

// create a data property that is of type String and names the
// feature

FdoPtr<FdoDataPropertyDefinition> sampleNameDataProperty;
sampleNameDataProperty = FdoDataPropertyDefinition::Create(L"Sam
pleNameDataProperty", L"Sample Name Data Property Description");
sampleNameDataProperty->SetDataType (FdoDataType String);
sampleNameDataProperty->SetLength (64) ;
sampleNameDataProperty->SetReadOnly (false) ;
sampleNameDataProperty->SetNullable (false) ;
sampleNameDataProperty->SetIsAutoGenerated (false) ;

// add the name property to the sampleFeatureClass
sampleFeatureClassProperties->Add (sampleNameDataProperty) ;

// create a geometric property
FdoPtr<FdoGeometricPropertyDefinition> sampleGeometricProperty;
sampleGeometricProperty = FdoGeometricPropertyDefinition::Cre
ate (L"SampleGeometricProperty", L"Sample Geometric Property Descrip
tion");

sampleGeometricProperty->SetGeometryTypes (FdoGeometricType Sur
face);

sampleGeometricProperty->SetReadOnly (false) ;
sampleGeometricProperty->SetHasMeasure (false);
sampleGeometricProperty->SetHasElevation (false) ;

// add the geometric property to the sampleFeatureClass
sampleFeatureClassProperties->Add (sampleGeometricProperty) ;

// identify it as a geometry property
sampleFeatureClass->SetGeometryProperty (sampleGeometricProperty) ;
// add the feature class to the schema
sampleClassCollection->Add (sampleFeatureClass) ;

// point the ApplySchema command at the newly created feature

// schema and execute

sampleApplySchema->SetFeatureSchema (sampleFeatureSchema) ;
sampleApplySchema->Execute () ;

Schema Management Examples | 113

Example: Describing a Schema and Writing It to an XML File

The following sample code demonstrates describing a schema and writing it
to an XML file:

// create the DescribeSchema command

FdoPtr<FdoIDescribeSchema> sampleDescribeSchema;

sampleDescribeSchema = (FdoIDescribeSchema *)
connection->CreateCommand (FdoCommandType DescribeSchema) ;

// executing the DescribeSchema command returns a feature

// schema collection that is, the set of feature schema which

// reside in the DataStore

FdoPtr<FdoFeatureSchemaCollection> sampleFeatureSchemaCollection;

sampleFeatureSchemaCollection = sampleDescribeSchema->Execute () ;

// find the target feature schema in the collection, write it

// to an xml file, and clear the collection

sampleFeatureSchema = sampleFeatureSchemaCollection->Find

Item(L"SampleFeatureSchema") ;

sampleFeatureSchema->WriteXml (L"SampleFeatureSchema.xml") ;

sampleFeatureSchemaCollection->Clear () ;

Example: Destroying a Schema

The following sample code demonstrates destroying a schema:

// create the DestroySchema command

FdoPtr<FdoIDestroySchema> sampleDestroySchema;

sampleDestroySchema = (FdoIDestroySchema *)
connection->CreateCommand (FdoCommandType DestroySchema) ;

// destroy the schema

sampleDestroySchema->SetSchemaName (L"SampleFeatureSchema") ;

sampleDestroySchema->Execute () ;

Example: Creating a Schema Read In from an XML File

The following sample code demonstrates creating a schema read in from an
XML file:

sampleFeatureSchemaCollection->ReadXml (L"SampleFeatureSchema.xml") ;
sampleFeatureSchema = sampleFeatureSchemaCollection->Find
Item(L"SampleFeatureSchema") ;

sampleApplySchema->SetFeatureSchema (sampleFeatureSchema) ;
sampleApplySchema->Execute () ;
sampleFeatureSchemaCollection->Clear () ;

114 | Chapter 7 Schema Management

SampleFeatureSchema.xml

The following sample XML schema is the contents of the file written out by
the WriteXml method belonging to the FdoFeatureSchema class object that
was created in the preceding sample code:

Schema Management Examples | 115

<?xml version="1.0" encoding="UTF-8" 2>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://fdo customer/SampleFeatureSchema"
xmlns:fdo="http://fdo.osgeo.org/schema"
xmlns:gml="http://www.opengis.net/gml"
xmlns:SampleFeatureSchema="http://fdo customer/
SampleFeatureSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:annotation>
<xs:documentation>Sample Feature Schema Description
</xs:documentation>
<xs:appinfo source="http://fdo.osgeo.org/schema" />
</xs:annotation>
<xs:element name="SampleFeatureClass"
type="SampleFeatureSchema:SampleFeatureClassType"
abstract="false" substitutionGroup="gml: Feature">
<xs:key name="SampleFeatureClassKey">
<xs:selector xpath=".//SampleFeatureClass" />
<xs:field xpath="SampleIdentityDataProperty" />
</xs:key>
</xs:element>
<xs:complexType name="SampleFeatureClassType"
abstract="false"
fdo:geometryName="SampleGeometricProperty"
fdo:hasMeasure="false"
fdo:hasElevation="false"
fdo:srsName="SC 0"
fdo:geometricTypes="surface">
<xs:annotation>
<xs:documentation>Sample Feature Class Description
</xs:documentation>
<xs:appinfo source="http://fdo.osgeo.org/schema" />
<xs:documentation>Sample Geometric Property Descrip
tion</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="gml:AbstractFeatureType">
<xs:sequence>
<xs:element name="SampleIdentityDataProperty"
default=""
type="fdo:int32">
<xs:annotation>

116 | Chapter 7 Schema Management

<xs:documentation>
Sample Identity Data Property Description
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="SampleNameDataProperty"
default="">
<xs:annotation>
<xs:documentation>
Sample Name Data Property Description
</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="64" />
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

</xs:schema>

Schema Management Examples | 117

118

Data Maintenance

This chapter provides information about using the FDO API to maintain data.

Data Maintenance Operations

The primary operations associated with data maintenance are:
Inserting

Updating

Deleting

Transactions

Locking

NOTE Discussion of Transactions and Locking is deferred to a future release of this
document.

Inserting Values

Preconditions

In a previous chapter, we created a feature schema and added a feature class to
it. The feature class had three properties: an integer data property, a string data
property, and a geometric property. We applied this feature schema to the data
store. We are now ready to create feature data objects, which are instances of
the feature class, and insert them into the data store.

19

Property Values in General

We can now create feature data objects, which are instances of the feature
class, by defining a set of property values corresponding to the properties
defined for the class and then inserting them into the data store.

An FDO class correspondends roughly to a table definition in a relational
database and a property of a class corresponds roughly to a column definition
in a table. Adding the property values corresponds roughly to adding a row
in the table.

The main distinction between a data value or geometry value and a property
value is the order in which they are created. A data value or geometry value
object is created first and is then used to create a property value object. The
property value object is then added to the value collection object belonging
to the Insert command object. Then, the command is executed.

An insert operation consists of the following steps:

1 Create the insert command object (type FdolInsert); this object can be
reused for multiple insert operations.

2 Point the insert command object at the feature class to which you are
adding values (call the SetFeatureClassName(<className>) method).

3 From the insert command object, obtain a pointer using the
GetPropertyValues() method to a value collection object (type
FdoPropertyValueCollection). You will add property values to the insert
command object by adding values to the collection object.

4 Create a data value (type FdoDataValue) or geometry value (type
FdoGeometryValue) object. Creating the data value is straightforward;
you pass the string or integer value to a static Create() method. Creating
the geometry value is described in Geometry Property Values on page 121.

5 Create a property value (type FdoPropertyValue) object, which involves
passing the data value or geometry value object as an argument to a static
Create() method.

6 Add the property value object to the value collection object.

7 Execute the Insert command.

Data Property Values

A data value object contains data whose type is one of the following:

H Boolean

120 | Chapter 8 Data Maintenance

Byte

DateTime

Decimal

Double

Int16

Int32

Int64

Single (another floating point type)
String

Binary large object (BLOB)

Character large object (CLOB)

The data value object is added to the data property value object. The data
property value object is added to the property value collection belonging to
the Insert command.

Geometry Property Values

A geometry property value object contains a geometry in the form of a byte
array. A geometry can be relatively simple, for example, a point (a single pair
of ordinates), or quite complex, for example, a polygon (one or more arrays
of ordinates). In the latter case, a number of geometry objects are created and
then combined together to form the target geometry. Finally, the target
geometry is converted to a byte array and incorporated into the geometry
property value object.

Creating a geometry value object consists of the following steps:

1 Create a geometry value object (type FdoGeometryValue) using a static
Create() method.

2 Create a geometry factory object (type FdoAgfGeometryFactory) using a
static GetInstance() method. This object is used to create the geometry
object or objects which comprise the target geometry.

3 Create the required geometry object or objects using the appropriate
Create<geometry> method() belonging to the geometry factory object.

Inserting Values | 121

4 Use the geometry factory object to convert the target geometry object to
a byte array.

5 Incorporate the byte array into the geometry property value object.

Example: Inserting an Integer, a String, and a Geometry Value

The following sample code shows how to insert an integer, a string, and a
geometry value:

122 | Chapter 8 Data Maintenance

// create the insert command
FdoPtr<FdoIInsert> samplelnsert;
sampleInsert = (FdoIInsert *)
connection->CreateCommand (FdoCommandType Insert);
// index returned by the operation which adds a value to the value
// collection
FdoInt32 valueCollectionIndex = 0;
// point the Insert command to the target class
// use a fully qualified class name
// whose format is <schemaName>:<className>
sampleInsert-> SetFeatureClassName (L"SampleFeatureSchema:SampleFea
tureClass");
// get the pointer to the value collection used to add properties
// to the Insert command
FdoPtr<FdoPropertyValueCollection> samplePropertyValues;
samplePropertyValues = samplelnsert->GetPropertyValues|() ;
// create an FdoDataValue for the identity property value
FdoPtr<FdoDataValue> sampleldentityDataValue;
sampleIdentityDataValue = FdoDataValue::Create (101);
// add the FdoDataValue to the identity property value
FdoPtr<FdoPropertyValue> sampleldentityPropertyValue;
sampleIdentityPropertyValue =
FdoPropertyValue: :Create (L"SampleIdentityDataProperty",
sampleIdentityDataValue) ;
// add the identity property value to the value collection
valueCollectionIndex =
samplePropertyValues->Add (sampleIdentityPropertyValue) ;
// create an FdoDataValue for the name property value
FdoPtr<FdoDataValue> sampleNameDataValue;
sampleNameDataValue = FdoDataValue::Create (L"Blue Lake");
// add the FdoDataValue to the name property value
FdoPtr<FdoPropertyValue> sampleNamePropertyValue;
sampleNamePropertyValue =
FdoPropertyValue: :Create (L"SampleNameDataProperty",
sampleNameDataValue) ;
// add the name property value to the value collection
valueCollectionIndex =
samplePropertyValues->Add (sampleNamePropertyValue) ;
// create an FdoGeometryValue for the geometry property value
// this polygon represents a lake which has an island
// the outer shoreline of the lake is defined as a linear ring
// the shoreline of the island is defined as a linear ring

// the outer shoreline is the external boundary of the polygon

Inserting Values | 123

// the island shoreline is an internal linear ring

// a polygon geometry can have zero or more internal rings
FdoPtr<FdoGeometryValue> sampleGeometryValue;
sampleGeometryValue = FdoGeometryValue::Create();

// create an instance of a geometry factory used to create the
// geometry objects

FdoPtr<FdoFgfGeometryFactory> sampleGeometryFactory;
sampleGeometryFactory = FdoFgfGeometryFactory::GetInstance();
// define the external boundary of the polygon, the shoreline of
// Blue Lake

FdoPtr<FdoILinearRing> exteriorRingBluelake;

FdoInt32 numBlueLakeShorelineOrdinates = 10;

double bluelakeExteriorRingOrdinates[] = {52.0, 18.0, 66.0, 23.0,
73.0, 9.0, 48.0, 6.0, 52.0, 18.0};
exteriorRingBluelLake = sampleGeometryFactory->CreatelLinearRing (

FdoDimensionality XY, numBlueLakeShorelineOrdinates,
bluelakeExteriorRingOrdinates) ;

// define the shoreline of Goose Island which is on Blue Lake

// this is the sole member of the list of interior rings

FdoPtr<FdoILinearRing> linearRingGooseIsland;

FdoInt32 numGooselslandShorelineOrdinates = 10;

double gooselslandLinearRingOrdinates[] = {59.0, 18.0, 67.0, 18.0,
67.0, 13.0, 59.0, 13.0, 59.0, 18.0};

linearRingGooseIsland = sampleGeometryFactory->CreatelLinearRing (
FdoDimensionality XY, numGooselIslandShorelineOrdinates,
gooselslandLinearRingOrdinates) ;

// add the Goose Island linear ring to the list of interior rings

FdoPtr<FdoLinearRingCollection> interiorRingsBlueLake;

interiorRingsBluelLake = FdoLinearRingCollection::Create();

interiorRingsBluelLake->Add (linearRingGooseIsland) ;

// create the Blue Lake polygon

FdoPtr<FdoIPolygon> bluelake;

bluelake =
sampleGeometryFactory->CreatePolygon (exteriorRingBlueLake,
interiorRingsBluelake) ;

// convert the Blue Lake polygon into a byte array

// and set the geometry value to this byte array

FdoByteArray * geometryByteArray =
sampleGeometryFactory->GetAgf (bluelLake) ;

sampleGeometryValue->SetGeometry (geometryByteArray) ;

// add the Blue Lake FdoGeometryValue to the geometry property

value

FdoPtr<FdoPropertyValue> sampleGeometryPropertyValue;

124 | Chapter 8 Data Maintenance

sampleGeometryPropertyValue =
FdoPropertyValue: :Create (L"SampleGeometryProperty",
sampleGeometryValue) ;
// add the geometry property value to the value collection
valueCollectionIndex =
samplePropertyValues->Add (sampleGeometryPropertyValue) ;
// do the insertion
// the command returns an FdoIFeatureReader
FdoPtr<FdoIFeatureReader sampleFeatureReader;

sampleFeatureReader = samplelnsert->Execute();

Updating Values

After inserting (see Inserting Values on page 119), you can update the values.
The update operation involves identifying a feature class (“table”), a feature
class object (“row”), and an object property (“column in a row”) to be changed,
and supplying a new value for the object property to replace the old.

First, create an FdoIUpdate command object and use the command object’s
SetFeatureClassName() method to identify the feature class. Then, create a
filter to identity the feature class object whose properties we want to update,
and use the command object’s SetFilter() method to attach the command to
it. Filters are discussed in Filter and Expression Languages on page 139.

One of the data properties in the example SampleFeatureClass class definition
is an identity property, whose name is “SampleldentityDataProperty” and
whose type is fdo:Int32. This means that its value uniquely identifies the
feature class object, that is, the “row”. Use the name of the identity property
in the filter. In the Insert operation, the value of the identity property was set
to be ‘101’. The value of the filter that is needed is “(
SampleldentityDataProperty = 101)”.

Finally, create a property value, which contains the new value, attach it to
the command object, and then execute the command.

Example: Updating Property Values

The following is an example of updating property values:

Updating Values | 125

FdoPtr<FdoIUpdate> sampleUpdate;
sampleUpdate =

(FdoIUpdate *)connection->CreateCommand (FdoCommandType Update) ;
FdoInt32 numUpdated = 0;
// point the Update command at the target feature class
// use a fully qualified class name
// whose format is <schemaName>:<className>
sampleUpdate-> SetFeatureClassName (L"SampleFeatureSchema:SampleFea
tureClass") ;
// set the filter to identify which set of properties to update
sampleUpdate->SetFilter (L" (SampleIdentityDataProperty = 101)");
// get the pointer to the value collection used to add properties
// to the Update command
// we are reusing the samplePropertyValues object that we used
// for the insert operation
samplePropertyValues = sampleUpdate->GetPropertyValues|() ;
// create an FdoDataValue for the name property value
FdoPtr<FdoDataValue> sampleNameDataValue;
sampleNameDataValue = FdoDataValue::Create (L"Green Lake");
// set the name and value of the property value
sampleNamePropertyValue->SetName (L"SampleNameDataProperty") ;
sampleNamePropertyValue->SetValue (sampleNameDataValue) ;
// add the name property value to the property value collection
// owned by the Update command
samplePropertyValues->Add (sampleNamePropertyValue) ;
// execute the command
numUpdated = sampleUpdate->Execute () ;

Deleting Values

In addition to inserting (see Inserting Values on page 119) and updating (see
Updating Values on page 125) values, you can delete the values. The deletion
operation involves identifying a feature class (“table”) whose feature class
objects (“rows”) are to be deleted.

First, create an FdoIDelete command object and use the command object’s
SetFeatureClassName() method to identify the feature class. Then, create a
filter to identity the feature class objects that you want to delete, and use the
command object’s SetFilter() method to attach the filter to it. You can use the
same filter that was specified in the preceding section, Updating Values on
page 125. Finally, execute the command.

126 | Chapter 8 Data Maintenance

Example: Deleting Property Values

Related

FdoPtr<FdoIDelete> sampleDelete;
sampleDelete =

(FdoIDelete *)connection->CreateCommand (FdoCommandType Delete);
FdoInt32 numbDeleted = 0;
sampleDelete—>
SetFeatureClassName (L"SampleFeatureSchema: SampleFeatureClass") ;
sampleDelete->SetFilter (L" (SampleIdentityDataProperty = 101)");
numDeleted = sampleDelete->Execute () ;

Class Topics

The following classes are used in the preceding Data Maintenance examples:

FdolInsert
FdoPropertyValueCollection
FdoDataValue
FdoPropertyValue
FdoGeometryValue
FdoFgfGeometryFactory
FdolLinearRing
FdoLinearRingCollection
FdolIPolygon
FdoByteArray

FdolDelete

FdolUpdate

For more information, see FDO API Reference Help.

Related Class Topics | 127

128

Performing Queries

This chapter describes how to create and perform queries. In the FDO API, you can use queries
to retrieve specific features from a data store.

Creating a Query

You create and perform queries using the FdolSelect class, which is a member
of the Feature sub-package of the Commands package. Queries are used to
retrieve features from the data store, and are executed against one class at a
time. The class is specified using the SetFeatureClassName() method in
FdoIFeatureCommand. The SetFeatureClassName can be used with feature and
non-feature classes.

FdolSelect supports the use of filters to limit the scope of features returned by
the command. This is done through one of the SetFilter methods available in
the FdoIFeatureCommand class. The filter is similar to the SQL WHERE clause,
which specifies the search conditions that are applied to one or more class
properties.

Search conditions include spatial and non-spatial conditions. Non-spatial queries
create a condition against a data property, such as an integer or string. Basic
comparisons (=, <, >, >=, <=, |=), pattern matching (like), and ‘In’ comparisons
can be specified. Spatial queries create a spatial condition against a geometry
property. Spatial conditions are enumerated in FdoSpatialCondition and
FdoDistanceCondition.

The feature reader (FdolFeatureReader) is used to retrieve the results of a query
for feature and non-feature classes. To retrieve the features from the reader,
iterate through the reader using the FdoIFeatureReader.ReadNext method().

129

Query Example

In the Data Maintenance chapter, we created an instance of the
FdoFeatureClass SampleFeatureClass and assigned values to its integer, string,
and geometry properties (see Example: Inserting an Integer, a String, and a
Geometry Value on page 122). The sample code in the following query example
selects this instance and retrieves the values of its properties. Specifically, the
sample code does the following:

1
2

Creates the select command, and

Points the select command at the target FdoFeatureClass
SampleFeatureClass, and

Creates a filter to identify which instance of SampleFeatureClass to select,
and

Points the select command at the filter, and
Executes the command, which returns an FdoIFeatureReader object, and

Loops through the feature reader object, which contains one or more
query results depending on the filter arguments. In the sample code
provided, there is only one result.

Finally, the code extracts the property values from each query result.

130 | Chapter 9 Performing Queries

// we have one FdoFeatureClass object in the DataStore

// create a query that returns this object

// create the select command

FdoPtr<FdoISelect> sampleSelect;

sampleSelect = (FdoISelect *)
connection->CreateCommand (FdoCommandType Select);

// point the select command at the target FdoFeatureClass

// SampleFeatureClass

sampleSelect->SetFeatureClassName (L"SampleFeatureClass") ;

// create the filter by

// 1. creating an FdoIdentifier object containing the name of

/7 the identity property

FdoPtr<FdoIdentifier> queryPropertyName;

queryPropertyName =
FdoIdentifier::Create(L"SampleIdentityDataProperty") ;

// 2. creating an FdoDataValue object containing the value of the

// identity property

FdoPtr<FdoDataValue> queryPropertyValue;

queryPropertyValue = FdoDataValue::Create (101);

// 3. calling FdoComparisonCondition::Create() passing in the

// the queryPropertyName, an enumeration constant signifying an

// equals comparison operation, and the queryPropertyValue

FdoPtr<FdoFilter> filter;

filter = FdoComparisonCondition: :Create (queryPropertyName,
FdoComparisonOperations EqualTo, queryPropertyValue);

// point the select command at the filter

sampleSelect->SetFilter (filter);

// execute the select command

FdoPtr<FdoIFeatureReader> queryResults;

queryResults = sampleSelect->Execute();

// declare variables needed to capture query results

FdoPtr<FdoClassDefinition> classDef;

FdoPtr<FdoPropertyDefinitionCollection> properties;

FdoInt32 numProperties = 0;

FdoPropertyDefinition * propertyDef;

FdoPropertyType propertyType;

FdoDataType dataType;

FdoDataPropertyDefinition * dataPropertyDef;

FdoString * propertyName = NULL;

FdoPtr<FdoByteArray> byteArray;

FdoIGeometry * geometry = NULL;

FdoGeometryType geometryType = FdoGeometryType None;

FdoIPolygon * polygon = NULL;

Query Example | 131

FdoILinearRing * exteriorRing = NULL;
NULL;
FdoIDirectPosition * position = NULL;

FdoILinearRing * interiorRing

FdoInt32 dimensionality = FdoDimensionality XY;
FdoInt32 numPositions = 0;
FdoInt32 numInteriorRings = 0;
// loop through the query results
while (queryResults->ReadNext ()) {
// get the feature class object and its properties
classDef = queryResults->GetClassDefinition();
properties = classDef->GetProperties();
// loop through the properties
numProperties = properties->GetCount () ;
for(int 1 = 0; 1 < numProperties; i++) {
propertyDef = properties->GetItem(i);
// get the property name and property type
propertyName = propertyDef->GetName () ;
propertyType = propertyDef->GetPropertyType () ;
switch (propertyType) {
// it’s a data property
case FdoPropertyType DataProperty:
dataPropertyDef =
dynamic cast<FdoDataPropertyDefinition *>
(propertyDef) ;
dataType = dataPropertyDef->GetDataType () ;
switch (dataType) {
case FdoDataType Boolean:
break;
case FdoDataType Int32:
break;
case FdoDataType String:
break;
default:
}
break;
// it’s a geometric property
// convert the byte array to a geometry
// and determine the derived type of the geometry
case FdoPropertyType GeometricProperty:
byteArray = queryResults->GetGeometry (propertyName) ;
geometry =
sampleGeometryFactory->CreateGeometryFromAgf

(byteArray) ;

132 | Chapter 9 Performing Queries

geometryType = geometry->GetDerivedType () ;
// resolve the derived type into a list of ordinates
switch (geometryType) {
case FdoGeometryType None:
break;
case FdoGeometryType Point:
break;
case FdoGeometryType LineString:
break;
case FdoGeometryType Polygon:
polygon = dynamic cast<FdoIPolygon *>(geometry);
exteriorRing = polygon->GetExteriorRing/() ;
dimensionality = exteriorRing-
>GetDimensionality () ;
numPositions = exteriorRing->GetCount () ;
double X, Y, Z, M;
for(int i=0; i<numPositions; i++) {
position = exteriorRing->GetItem(i);
if (dimensionality & FdoDimensionality 7 &&
dimensionality & FdoDimensionality M) {
X = position->GetX() ;
Y = position->GetY () ;
7 = position->GetZ();
M = position->GetM() ;
else if (dimensionality & FdoDimensionality 2
&& ! (dimensionality & FdoDimensionality M)) {
X = position->GetX() ;
Y = position->GetY () ;
Z = position->GetZ();
else {
X = position->GetX();
Y = position->GetY () ;

}

numInteriorRings = polygon-
>GetInteriorRingCount () ;

for (int i=0; i<numInteriorRings; i++) {
interiorRing = polygon->GetInteriorRing(1i);
// do same for interior ring as exterior ring

}

break;

case FdoGeometryType MultiPoint:

break;

Query Example | 133

case FdoGeometryType MultiLineString:
break;
case FdoGeometryType MultiPolygon:
break;
case FdoGeometryType MultiGeometry:
break;
case FdoGeometryType CurveString:
break;
case FdoGeometryType CurvePolygon:
break;
case FdoGeometryType MultiCurveString:
break;
case FdoGeometryType MultiCurvePolygon:
break;
default:
}
break;
default:

134 | Chapter 9 Performing Queries

Long Transaction
Processing

This chapter defines long transactions (LT) and long transaction interfaces, and explains how
to implement LT processing in your application.

NOTE For this release, the providers that support long transaction processing are Autodesk
FDO Provider for Oracle and OSGeo FDO Provider for ArcSDE.

What Is Long Transaction Processing?

A long transaction (LT) is an administration unit that is used to group
conditional changes to objects. Depending on the situation, such a unit can
contain conditional changes to one or to many objects. Long transactions are
used to modify as-built data in the database without permanently changing the
as-built data. Long transactions can be used to apply revisions or alternates to
an object.

A root long transaction is a long transaction that represents permanent data
and that has descendents. Any long transaction has a root long transaction as
an ancestor in its long transaction dependency graph. A leaf long transaction
does not have descendents.

For more information about Oracle-specific long transaction versions and
locking, see Locking and Long Transactions.

135

Supported Interfaces
In the current release of FDO, the following long transaction interfaces are
supported:

FDOIActivateLongTransaction

FDOIDeactivateLongTransaction

FDOIRollbackLongTransaction

FDOICommitLongTransaction

FDOICreateLongTransaction

FDOIGetLongTransaction

These interfaces are summarized below. For more information about their
usage, supported methods, associated enumerations and readers, see the FDO
API Reference Help.

FDOIActivateLongTransaction

The FdolActivateLongTransaction interface defines the
ActivateLongTransaction command, which activates a long transaction where
feature manipulation and locking commands operate on it. Input to the
activate long transaction command is the long transaction name. The Execute
operation activates the identified long transaction.

FDOIDeactivateLongTransaction

The FdoIDeactivateLongTransaction interface defines the
DeactivateLongTransaction command, which deactivates the active long
transaction where feature manipulation and locking commands operate on
it. If the active long transaction is the root long transaction, then no long
transaction will be deactivated.

FDOIRollbacklLongTransaction

The FdolIRollbackLongTransaction interface defines the
RollbackLongTransaction command, which allows a user to execute rollback
operations on a long transaction. Two different rollback operations are
available: Full and Partial.

136 | Chapter |10 Long Transaction Processing

The operation is executed on all data within a long transaction and on all its
descendents. The data is removed from the database and all versions involved
in the process deleted.

NOTE If the currently active long transaction is the same as the one being
committed or rolled back, then, if the commit or rollback succeeds, the provider
resets the current active long transaction to be the root long transaction. If it does
not succeed, the active long transaction is left alone and current. If the currently
active long transaction is not the same as the one being committed or rolled back,
then it is not affected.

FDOICommitLongTransaction

The FdoICommitLongTransaction interface defines the
CommitLongTransaction command, which allows a user to execute commit
operations on a long transaction. Two different commit operations are
available: Full and Partial.

The commit operation can be performed on a leaf long transaction only. A
long transaction is a leaf long transaction if it does not have descendents.

FDOICreateLongTransaction

The FdolCreateLongTransaction interface defines the CreateLongTransaction
command, which creates a long transaction that is based on the currently
active long transaction. There is always an active long transaction. If the user
has not activated a user-defined long transaction, then the root long
transaction is active.

Input to the CreateLongTransaction command includes a name and description
for the new long transaction. The long transaction name submitted to the
command has to be unique. If it is not unique, an exception is thrown.

FDOIGetLongTransactions

The FdolGetLongTransactions interface defines the GetLongTransactions
command, which allows the user to retrieve long transaction information. If
a long transaction name is submitted, the command returns the information
for the named long transaction only. If no long transaction name is given,
the command retrieves the names of all available long transactions.

For each returned long transaction, the user has the option to retrieve a list
of descendents and/or ancestors.

Supported Interfaces | 137

138

Filter and Expression
Languages

This chapter discusses the use of filters and filter expressions. You can use filters and expressions
to specify to an FDO provider how to identify a subset of the objects in a data store.

For more information and implementation details about the expression functions signatures,
the RDBMS-specific built-in support for some of the functions, and the provider-specific
support, see the appendix Expression Functions.

Filters

FDO uses filters through its commands (including provider-specific commands)
to select certain features and exclude others.

A filter is a construct that an application specifies to an FDO provider to identify
a subset of objects of an FDO data store. For example, a filter may be used to
identify all Road type features that have 2 lanes and that are within 200 metres
of a particular location. Many FDO commands use filter parameters to specify
the objects to which the command applies. For example, a select command
takes a filter to identify the objects that the application wants to retrieve or a
delete command takes a filter to identify the objects that the application wants
to delete from the data store.

When a command executes, the filter is evaluated for each feature instance and
that instance is included in the scope of the command only if the filter evaluates
to True. Filters may be specified either as text or as an expression tree. Feature
providers declare their level of support for filters through the filter capabilities
metadata. Query builders should configure themselves based on the filter
capabilities metadata in order to provide users with a robust user interface. For
more information, see What Is an Expression? on page 19.

139

Expressions

FDO uses expressions through its commands (including provider-specific
commands) to specify input values in order to filter features. In general,
commands in FDO do not support the SQL command language (the one
exception is the optional SQLCommand). However, to facilitate ease of use
for application developers, expressions in FDO can be specified using a textual
notation that is based syntactically on expressions and SQL WHERE clauses.
In FDO, expressions are not intended to work against tables and columns, but
against feature classes, properties, and relationships. For example, an expression
to select roads with four or more lanes might look like this:

Lanes >= 4

An expression is a construct that an application can use to build up a filter.
In other words, an expression is a clause of a filter or larger expression. For
example, “Lanes >=4 and PavementType = 'Asphalt'” takes two expressions
and combines them to create a filter.

Filter and Expression Text

In general, commands in FDO do not support the SQL command language
(the one exception is the optional SQLCommand). However, to facilitate ease
of use for application developers, expressions and filters in FDO can be specified
using a textual notation that is based syntactically on expressions and SQL
WHERE clauses. The biggest difference between this approach and SQL is that
these clauses are not intended to work against tables and columns, but against
feature classes, properties, and relationships. For example, a filter to select
roads with four or more lanes might look like:

Lanes >= 4

Similarly, a filter to select all PipeNetworks that have at least one Pipe in the
proposed state might look like:

Pipes.state = "proposed"

Furthermore, a filter to select all existing parcels whose owner contains the
text “Smith” might look like:

state = "existing" and owner like "$Smith%"

Finally, a filter to select all parcels that are either affected or encroached upon
by some change might look like:

140 | Chapter || Filter and Expression Languages

state in ("affected", "encroached")

Language Issues
There are a number of language issues to be considered when working with
classes in the Filter, Expression, and Geometry packages:
Provider-specific constraints on text
Filter grammar
Expression grammar

Filter and Expression keywords

|

|

|

|

B Data types
B Operators

B Special characters
|

Geometry value

Provider-Specific Constraints on Filter and
Expression Text

Some providers may have reserved words that require special rules when used
with filters and expressions. For more information, see Oracle Reserved Words
Used with Filter and Expression Text.

Filter Grammar

The rules for entering filter expressions are described in the following sections
using BNF notation. For more information about BNF notation, see
http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNE.html.

The FdoFilter::Parse() method supports the following filter grammar:

Language Issues | 141

<Filter> ::= '(' Filter '")'
<LogicalOperator>

| <SearchCondition>

<LogicalOperator> ::= <BinaryLogicalOperator>
| <UnaryLogicalOperator>
<BinaryLogicalOperator> ::=

<Filter> <BinaryLogicalOperations> <Filter>
<SearchCondition> ::= <InCondition>

| <ComparisonCondition>

| <GeometricCondition>

| <NullCondition>

<InCondition> ::= <Identifier> IN ' (' ValueExpressionCollection
Ty

<ValueExpressionCollection> ::= <ValueExpression>

| <ValueExpressionCollection> ',' <ValueExpression>

<ComparisonCondition> ::=

<Expression> <ComparisonOperations> <Expression>
<GeometricCondition> ::= <DistanceCondition>

| <SpatialCondition>

<DistanceCondition> ::=

<Identifier> <DistanceOperations> <Expression> <distance>
<NullCondition> ::= <Identifier> NULL
<SpatialCondition> ::=

<Identifier> <SpatialOperations> <Expression>
<UnaryLogicalOperator> ::= NOT <Filter>
<BinaryLogicalOperations> ::= AND | OR
<ComparisionOperations> ::=

= // EqualTo (EQ)

<> // NotEqualTo (NE)

> // GreaterThan (GT)

>= // GreaterThanOrEqualTo (GE)

< // LessThan (LT)

<= // LessThanOrEqualTo (LE)

LIKE // Like

<DistanceOperations> ::= BEYOND | WITHINDISTANCE

<distance> ::= DOUBLE | INTEGER

<SpatialOperations> ::= CONTAINS | CROSSES | DISJOINT

| EQUALS | INTERSECTS | OVERLAPS | TOUCHES | WITHIN | COVEREDBY |
INSIDE

142 | Chapter || Filter and Expression Languages

Expression Grammar

The FdoExpression::Parse() method supports the following expression grammar:

<Expression> ::= ' (' Expression ')'
| <UnaryExpression>

| <BinaryExpression>

| <Function>

| <Identifier>

| <ValueExpression>
<BinaryExpression> ::=
<Expression> '+' <Expression>

| <Expression> '-' <Expression>
| <Expression> '*' <Expression>
| <Expression> '/' <Expression>
<DataValue> ::=

| FALSE

| DATETIME

| DOUBLE

| INTEGER

| STRING

| BLOB

| CLOB

| NULL

<Function> ::= <Identifier> '(' <ExpressionCollection> ')'

<ExpressionCollection> ::=

| <Expression>

| <ExpressionCollection> ',' <Expression>
<GeometryValue> ::= GEOMFROMTEXT ' (' STRING ')'
<Identifier> ::= IDENTIFIER

<ValueExpression> ::= <LiteralValue> | <Parameter>;
<LiteralValue> ::= <GeometryValue> | <DataValue>
<Parameter> ::= PARAMETER | ':'STRING
<UnaryExpression> ::= '-' <Expression>

Expression Operator Precedence

The precedence is shown in YACC notation, that is, the highest precedence
operators are at the bottom.

$left Add Subtract
$left Multiply Divide
$left Negate

Expression Grammar | 143

Filter and Expression Keywords

The following case-insensitive keywords are reserved in the language, that is,
they cannot be used as identifier or function names:

AND BEYOND COMPARE CONTAINS COVEREDBY CROSSES DATE
DISJOINT DISTANCE EQUALS FALSE GeomFromText IN INSIDE
INTERSECTS LIKE NOT NULL OR OVERLAPS RELATE SPATIAL TIME
TIMESTAMP TOUCHES TRUE WITHIN WITHINDISTANCE

Data Types

The available data types are described in this section.

Identifier

An identifier can be any alphanumeric sequence of characters other than a
keyword. Identifiers can be enclosed in double quotes to allow special
characters and white space. If you need to include a double quote character
inside an identifier, double the character, for example "abc""def".

Parameter

Parameters are defined by a colon followed by alphanumeric characters. The
FDO filter language extends SQL to allow for a literal string to follow the colon
to allow blanks (and other possibilities), for example, :'Enter Name'.

Determine whether parameters are supported by the FDO Provider you are
using by checking SupportParameters on the Connection interface.

String

Strings are literal constants enclosed in single quotes. The FDO filter language
also supports the special characters (left and right single quotes) that Microsoft
Word uses to automatically replace the single quote character typed from the
keyboard. If you need to include a single quote character inside a string you
can double the character, for example 'aaa"bbb'.

144 | Chapter || Filter and Expression Languages

Integer

Integers allow only decimal characters with an optional unary minus sign.
Unary plus is not supported.

(){[0-91}

Double

Floating point numbers have a decimal point, can be signed (-), and include
an optional exponent (e{[0-9]}).

NOTE If an integer is out of the 32-bit precision range, it is converted to floating
point.

Examples:

-3.4
12345678901234567
1.2el3

DateTime

Date and time are parsed using the standard SQL literal strings:

DATE 'YYYY-MM-DD'
TIME 'HH:MM:SS[.sss]'
TIMESTAMP 'YYYY-MM-DD HH:MM:SS[.sss]'

For example:

DATE '1971-12-24"
TIMESTAMP '2003-10-23 11:00:02"

NOTE The BLOB and CLOB strings are currently not supported. If you need to
support binary input, use parameters.

Data Types | 145

Operators

The following operators are special characters common to SQL and most
programming languages:

BinaryOperations

These binary operations are available:

+ Add (for compatibility with SQL string concatenation may also be defined
using “II"”)

- Subtract
* Multiply
/ Divide

UnaryOperations

These unary operation are available:

- Negate
Comparison Operations

These comparison operations are available:
= EqualTo (EQ)

<> NotEqualTo (NE)

> GreaterThan (GT)

>= GreaterThanOrEqualTo (GE)

< LessThan (LT)

<= LessThanOrEqualTo (LE)

Operator Precedence

The following precedence is shown from highest to lowest:
Negate NOT

Multiply Divide

Add Subtract

146 | Chapter || Filter and Expression Languages

Special

EQNE GT GELT LE
AND
OR

Character

The following special characters are used in ExpressionCollections and
ValueExpressions to define function arguments and IN conditions:

(Left Parenthesis
, Comma
) Right Parenthesis

The Colon (:) is used in defining parameters and the Dot (.) can be included
in real numbers and identifiers.

Geometry Value

Geometry values are handled using a function call GeomFromText('FGF Text
string'), as is typical in an SQL query.

The Autodesk extension to WKT, referred to as FGF Text, is a superset of WKT
(that is, you can enter WKT as valid FGF Text strings). Dimensionality is
optional. It can be XY, XYM, XYZ, or XYZM. If it is not specified, it is assumed
to be XY. For more information about FGF Text, see FGF Text on page 158.

NOTE Extra ordinates are ignored, rather than generating an error during FGF
text parsing. For example, in the string “POINT (10 11 12)”, the ‘12" is ignored
because the dimensionality is assumed to be XY.

The following is the grammar definition for FGF Text:
<FGF Text> ::= POINT <Dimensionality> <PointEntity>
| LINESTRING <Dimensionality> <LineString>

| POLYGON <Dimensionality> <Polygon>

| CURVESTRING <Dimensionality> <CurveString>

| CURVEPOLYGON <Dimensionality> <CurvePolygon>
| MULTIPOINT <Dimensionality> <MultiPoint>

Special Character | 147

| MULTILINESTRING <Dimensionality> <MultiLineString>

| MULTIPOLYGON <Dimensionality> <MultiPolygon>

| MULTICURVESTRING <Dimensionality> <MultiCurveString>
| MULTICURVEPOLYGON <Dimensionality> <MultiCurvePolygon>
| GEOMETRYCOLLECTION <GeometryCollection>
<PointEntity> ::='(' <Point> ")’

<LineString> ::='(' <PointCollection>")'

<Polygon> ::='(' <LineStringCollection> ")’

<MultiPoint> ::='(' <PointCollection>")'

<MultiLineString> ::='(' <LineStringCollection> ")’
<MultiPolygon> ::='(' <PolygonCollection> ")’
<GeometryCollection : '(' <FGF Collection Text>")'
<CurveString> ::= '(' <Point> '(' <CurveSegmentCollection>")'")'
<CurvePolygon> ::= (' <CurveStringCollection> ')’
<MultiCurveString> ::= '(' <CurveStringCollection> ')'
<MultiCurvePolygon> ::= '(' <CurvePolygonCollection> ')’
<Dimensionality> ::= // default to XY

| XY

| XYZ

| XYM

| XYZM

<Point> ::= DOUBLE DOUBLE

| DOUBLE DOUBLE DOUBLE

| DOUBLE DOUBLE DOUBLE DOUBLE

<PointCollection> ::= <Point>

| <PointCollection ',' <Point>

<LineStringCollection> ::= <LineString>

| <LineStringCollection> ',' <LineString>

<PolygonCollection> ::= <Polygon>

148 | Chapter || Filter and Expression Languages

| <PolygonCollection>',' <Polygon>

<FGF Collection Text> ::= <FGF Text>

| <FGF Collection Text>',' <FGF Text>
<CurveSegment> ::= CIRCULARARCSEGMENT '(' <Point> ',' <Point> ")’
| LINESTRINGSEGMENT '(' <PointCollection> ')'
<CurveSegmentCollection> ::= <CurveSegment>
| <CurveSegmentCollection>',' <CurveSegment>
<CurveStringCollection> ::= <CurveString>

| <CurveStringCollection> ',' <CurveString>
<CurvePolygonCollection> ::= <CurvePolygon>

| <CurvePolygonCollection>'," <CurvePolygon>

The only other token type is DOUBLE, representing a double precision floating
point values. Integer (non-decimal point) input is converted to DOUBLE in
the lexical analyzer.

Examples of the Autodesk extensions include:
POINT XY (10 11) // equivalent to POINT (10 11)
POINT XYZ (10 11 12)

POINT XYM (10 11 1.2)

POINT XYZM (10 11 12 1.2)

GEOMETRYCOLLECTION (POINT xyz (10 11 12),POINT XYM (30 20 1.8),
LINESTRING XYZM(1 2 3 4, 3 5 15, 3 20 20))

CURVESTRING (0 0 (LINESTRINGSEGMENT (10 10, 20 20, 30 40))))

CURVESTRING (0 0 (CIRCULARARCSEGMENT (11 11, 12 12),
LINESTRINGSEGMENT (10 10, 20 20, 30 40)))

CURVESTRING (0 0 (ARC (11 11, 12 12), LINESTRINGSEGMENT (10 10, 20
20, 30 40)))

CURVESTRING XYZ (0 0 0 (LINESTRINGSEGMENT (10 10 1, 20 20 1, 30 40
1))

MULTICURVESTRING ((0 0 (LINESTRINGSEGMENT (10 10, 20 20, 30 40))),(0
0 (ARC (11 11, 12 12), LINESTRINGSEGMENT (10 10, 20 20, 30 40))))

Geometry Value | 149

CURVEPOLYGON ((0 0 (LINESTRINGSEGMENT (10 10, 10 20, 20 20), ARC
(20 15, 10 10))), (0 0 (ARC (11 11, 12 12), LINESTRINGSEGMENT (10 10, 20
20, 40 40, 90 90))))

MULTICURVEPOLYGON (((0 0 (LINESTRINGSEGMENT (10 10, 10 20, 20 20),
ARC (20 15, 10 10))), (0 0 (ARC (11 11, 12 12), LINESTRINGSEGMENT (10 10,
20 20, 40 40, 90 90)))),((0 0 (LINESTRINGSEGMENT (10 10, 10 20, 20 20),
ARC (20 15, 10 10))), (0 0 (ARC (11 11, 12 12), LINESTRINGSEGMENT (10 10,
20 20, 40 40, 90 90)))))

150 | Chapter || Filter and Expression Languages

The Geometry API

This chapter describes the FdoGeometry API (hereafter called the “Geometry API”) and explains
the various geometry types and formats.

Introduction
The Geometry API supports specific Autodesk applications and APIs, including
FDO (Feature Data Objects). This API consists of the following components:
B a Geometry Type package (all through fully encapsulated interfaces)
B an Abstract Geometry Factory

B a Concrete Geometry Factory for FGF

You can work with the Geometry API in several different ways:
B FGF (Feature Geometry Format)
B FGF Text

B Abstract Geometry Factory

FGF and WKB

WKB is a memory layout used to store geometry features. This format was created
by the OpenGIS organization to allow the efficient exchange of geometry data
between different components in an FDO system. Most pieces of the original
specification defining the WKB format are in the document, 99-050.pdf, the
OpenGlIS Simple feature specification for OLE/COM that can be found at
Www.opengis.org.

151

FGF is an extended version of the Well Known Binary (WKB) format. The two
formats differ in the following ways:

B WHKB defines a byte order of the data in every piece of geometry. This is
stored as a byte field, which may change the memory alignment from
word to byte. In FGF, only one memory alignment type is supported, which
is the same alignment type used by the .NET framework and Windows;
the encoding uses the little-endian byte order format. As a result, the byte
flag does not need to be stored.

B WKB is defined as a 2D format only. This is insufficient to represent 3D
points, polylines and polygons. In FGF, the dimension flag has been added.
In particular, a flag is included for each geometry piece to indicate whether
the geometry is 2D, 3D, or even 4D (storing a measure value as used by
dynamic segmentation.

B FGF includes geometry types that are not yet covered by any WKB
specification.

FGF Binary Specification

In this section, the memory layout of each simple geometry type is described.
The format is based on the OGC specification, which is built on the memory
layout of a C++ struct. All arrays have a computable size and are inline; they
do not point to a different location in memory. This format allows streaming
of geometry data.

First, the different data types, their size, and memory layout are discussed.

152 | Chapter 12 The Geometry API

// double == 8byte IEEE double number in little endian encoding.
// int == 4 byte integer in little endian encoding
// the type of the geometry
enum GeometryType : int

{

None = O,

Point = 1,

LineString = 2,

Polygon = 3,

MultiPoint = 4,

MultiLineString = 5,

MultiPolygon = 6,

MultiGeometry = 7,

CurveString = 10,

CurvePolygon = 11,

MultiCurveString = 12,

MultiCurvePolygon = 13

Coordinate Types

This is a bit field, for example, xym == coordinateDimensionality.XY |
CoordinateDimensionality.M. The following sequence defines the type of
coordinates used for this object:

enum CoordinateDimensionality : FdoInt32

Basic Geometry

The following sequence establishes the basic pure geometry:

struct Geometry

{

int geomType;
CoordinateDimensionality type;

}

FGF Binary Specification | 153

Notation Definition

The following sequence defines a notation used to specify geometries within
a byte stream.

154 | Chapter 12 The Geometry API

// Define a notation within this specification
// int PositionSize (geometry)
/7 A

// if (geometry.type == CoordinateDimensionality.XY |
// CoordinateDimensionality.M ||
// geometry.type == CoordinateDimensionality.XY |
// CoordinateDimensionality.Z)

// return 3;

// 1f (geometry.type == CoordinateDimensionality.XY |
// CoordinateDimensionality.M | CoordinateDimensionality.Z)
// return 4

// return 2;

/7 0}
struct Point // : Geometry
{

int geomType; // == GeometryType.Point;

CoordinateDimensionality type; // all types allowed

double[] coords; // size = PositionSize (this)

}
struct LineString
{

int geomType;

CoordinateDimensionality type;

int numPts; // >0

double[] coords; // size = numPts* PositionSize (this)

}
struct MultiPoint
{

int geomType;

int numPoints; // > 0

Point[] points; // size = numPoints

}
struct MultilineString
{

int geomType;

int numLineStrings; // >= 0

LineString[] lineStrings; // size = numLineStrings

}

// building block for polygons, not geometry by itself
struct LinearRing

{

int numPts; // >0

double[] coords; // size = numPts* PositionSize (polygon)

FGF Binary Specification | 155

}

struct Polygon

{

int geomType;

CoordinateDimensionality type;

int numRings; // >= 1 as there has to be at least one ring
LinearRing[] lineStrings; // size = numRings
}

struct MultiPolygon

{

int geomType;

int numPolygons; // >= 0

Polygon[] polygons; // size = numPolygons

}

struct MultiGeometry

{

int geomType;

int numGeom; // >= 0

Geometry[] geometry; // size = numGeom

}
enum CurveElementType : int

{

LineString = 1,

CircularArc = 2

}
struct CurveStringElement

{

int CurveElementType;

}
struct LinearCurveStringElement

{

int CurveElementType;

int length;

double[] coords; // size = this.length * PositionSize (this)
}
struct CircularArcCurveStringElement

{

int CurveElementType; // == CurveElmentType.Arc
double[] coords; // size = 2 * PositionSize (this)
}
struct CurveString

{

int geomType;

156 | Chapter 12 The Geometry API

CoordinateDimensionality type; // all types allowed
double[] startPoint; // size = PositionSize (this)
int numElements; // >=0

CurveStringElement[] elements; // size = numElements
}

struct Ring

{

double[] startPoint; // size = PositionSize (this)
int numElements; // >=0

CurveStringElement[] elements; // size = numElements
}

struct MultiCurveString

{

int geomType;

int numCurveStrings; // >= 0

CurveString[] curveStrings; // size = numCurveStrings
}

struct CurvePolygon

{

int geomType; ;

CoordinateDimensionality type;

int numRings; // >=1 as there has to be at least one ring
Ring[] rings; // size = numRings

}

struct MultiCurvePolygon

{

int geomType;

int numPolygons; // >=0

CurvePolygon[] polygons; // size = numElements

}

In the following example a polygon is formatted within a byte array
representing the stream according to the FGF specification.

FGF Binary Specification | 157

T = 3 stands for GeometryType == GeometryType.Polygon
CT = 0 stands for CoordinateDimensionality == CoordinateDimensionality. XY
NR = 2 stands for number of rings = 2

NP =3 stands for number of points = 3

FGF Text

FGF Text is the textual analogue to the binary FGF format. It is a superset of
the OGC WKT format. XY dimensionality is the default, and is optional. FGF
Text can be used to represent any geometry value in the Geometry API, whether
or not it originates from the FGF geometry factory. Conversions are done with
the following methods:

B FdoGeometryFactoryAbstract:: CreateGeometry(FdoString* text);
B FdolGeometry:: GetText();”

A BNF for the FGF textual specification is contained in the topic Geometry
Value on page 147.

Abstract and Concrete Classes

The Geometry API is almost completely abstract. It provides an object-oriented
interface to geometry values. All objects in the Geometry API have factory
methods in the FdoGeometryFactorytAbstract class. One default
implementation is provided, based on FGF in-memory binary storage. It is
accessible via the concrete class FdoFgfGeometryFactory.

NOTE The FdoFgfGeometryFactory employes object pooling for many of the data
types in the APIl. While many methods appear to be executing “Create” or “Get”
actions, they are, in fact, accessing object pools, thus avoiding costly operations
on the memory heap.

All of the other classes in the Geometry API with the exception of two relate
to the main abstract type, FdoIGeometry. They either derive from it or are
components of it.

158 | Chapter 12 The Geometry API

The two exception concrete classes are:

B FdoDirectPositionImpl, a small helper class implementing

FdoIDirectPosition.
B FdoEnvelopeImpl, a small helper class implementing FdoIEnvelope.
Geometries in FGF format can be exchanged between software components
without depending on the Geometry API itself, because they are not genuine

geometry “objects.” FGF content is based on byte arrays. It is handled through
a simple FdoByteArray class that is not specific to geometry.

Geometry Types

The Geometry types comprise the Global Enum FdoGeometryType. The
following are Geometry types:

B 0 FdoGeometryType_None Indicates no specific type; used for “unknown”,
“do not care” or an incompletely constructed Geometry object.

NOTE FdoGeometryType_ None does not represent an instantiable type. An FDO
client should not expect an FDO provider to list support for it in its capabilities.

1 FdoGeometryType_Point Point type (FdoIPoint).

2 FdoGeometryType_LineString LineString type (FdoILineString).

|

|

B 3 FdoGeometryType_Polygon Polygon type (FdoIPolygon).

B 4 FdoGeometryType_MultiPoint MultiPoint type (FdoIMultiPoint).
|

5 FdoGeometryType_MultiLineString MultiLineString type
(FdoIMultiLineString).

6 FdoGeometryType_MultiPolygon MultiPolygon type (FdoIMultiPolygon).

7 FdoGeometryType_MultiGeometry MultiGeometry type
(FdoIMultiGeometry).

B 10 FdoGeometryType_CurveString CurveString type (FdoICurveString).

B 11 FdoGeometryType_CurvePolygon CurvePolygon type
(FdoICurvePolygon).

Geometry Types | 159

B 12 FdoGeometryType_MultiCurveString MultiCurveString type
(FdoIMultiCurveString).

B 13 FdoGeometryType_MultiCurvePolygon MultiCurvePolygon type
(FdoIMultiCurvePolygon

Mapping Between Geometry and Geometric

Types

The FDO API GeometricType enumeration of GeometricProperty gives the
client application some knowledge of which geometry types comprise the
geometric property so that it can present the user with an intelligent editor
for selecting styles for rendering the geometry. In particular, GeometricType
relates to shape dimensionality of geometries allowed in FDO geometric
properties. The nearest analogues in the Geometry API are:

B FdoDimensionality, which pertains to ordinate (not shape) dimensionality
of geometry values.

m FdoGeometryType, which has types whose abstract base types map to
Geometric Type

The GeometricType enumeration is as follows:

Point = 0x01, // Point Type Geometry

|

B Curve = 0x02, // Line and Curve Type Geometry

B Surface = 0x04, // Surface (or Area) Type Geometry
|

Solid = 0x08, // Solid Type Geometry

NOTE The enumeration defines a bit mask and the GetGeometricTypes and

SetGeometricTypes methods take and return an integer. This is to allow a geometry

property to be of more than one type. For example, the call:
geometricProperty.SetGeometricTypes (Point | Surface);

would allow the geometric property to represent either point type geometry or

surface type geometry (polygons).

160 | Chapter 12 The Geometry API

Spatial Context

Spatial Context is a coordinate system with an identity. Any geometries that
are to be spatially related must be in a common spatial context.

Providing an identify for each coordinate system supports separate workspaces,
such as schematic diagrams, which are non-georeferenced. However, there
are also georeferenced cases. In general, two users may create drawings using
the same default spatial parameters (for example, rectangular and
10,000x10,000) that have nothing to do with each other. If their drawings
are to be put into a common database, the spatial context capability of FDO
preserves the container aspect of the data along wih the spatial parameters.

The FDO Spatial Context Commands are part of the FDO API. They support
control over Spatial Contexts in the following ways:

B Metadata control. Creates and deletes Spatial Contexts.

B Active Spatial Context. A session setting to specify which Spatial Context
to use by default while storing/retrieving geometries and performing spatial
queries.

There is a default Spatial Context for each database. Its attributes (such as
coordinate system) are specified when the database is created. This Spatial
Context is the active one in any FDO session until a Spatial Context Command
is used to change this state. The default Spatial Context’s identifier number
is O (zero).

Spatial contexts have two tolerance attributes: XYTolerance and ZTolerance.
The tolerances are in distance units that depend on the coordinate system in
use. Geodetic coordinate systems typically have “on the ground” linear distance
units instead of the angular (that is, degrees, minutes or seconds) units used
for positional ordinates. The meter is the most common unit. Most
non-geodetic systems are rectilinear and use the same unit for positional
ordinates and distances, for example, meters or feet.

Specify Dimensionality When Creating
Geometries Using String Specifications

When creating a 3D geometry from string specifications, you must specify the
Dimensionality argument xvz explicitly, because the default dimensionality
is XY, and the geometry factory code will only process the first two ordinates.

Spatial Context | 161

The following code successfully creates pointone as a 3D point, whereas
pointTwo is created as a 2D point.

FdoFgfGeometryFactory * geometryFactory = FdoFgfGeometryFact
ory::GetInstance() ;

FdoIPoint * pointOne;

pointOne = dynamic cast (geometryFactory->CreateGeometry (L”GeomFrom
Text (YPOINT XYZ (1 2 3)')”"));

FdoPoint * pointTwo;

pointTwo = dynamic_cast (geometryFactory->CreateGeometry (L”GeomFrom
Text (‘POINT (1 2 3)")"));

xmlFeatureFlags = FdoXmlFeatureFlags.Create(None, FdoXmlFlags.Er
rorLevel Normal, True, FdoXmlFeatureFlags.ConflictOption Add)

Inserting Geometry Values

For information about geometry property values, see Geometry Property Values
on page 121.

See Example: Inserting an Integer, a String, and a Geometry Value on page
122 for a code example that shows how to insert a Geometry value.

162 | Chapter 12 The Geometry API

FDO Cookbook

Introduction

This chapter contains code samples of common operations.

Some operations like connection must discuss differences among providers.
References are made to both Autodesk proprietary providers and open source
providers. Providers whose name begins with “Autodesk” are available only in
commercial releases of Autodesk products. Providers whose name begins with
“OSGeo” are available in releases of open source software at http:/fdo.osgeo.org.
Some of the open source providers are also available in commercial releases of
Autodesk products.

Recommendations

B After iterating through readers such IFeatureReader, IDataReader,
ISQLDataReader or DbUserReader, call the Close() or Dispose() method. Not
doing so may cause unhandled exceptions at some future time. Be sure to
enclose the statement that returns a reader in a try block so that you can
close the reader in the catch block.

Registry

The registry contains the list of providers that are available in a particular FDO
installation. FDO initializes the registry using the contents of the providers.xml
file that is co-located with the FDO binaries.

163

http:/fdo.osgeo.org

The /FeatureProviderRegistry/FeatureProvider/Name elements in the
providers.xml file contain fully qualified provider names. A fully qualified
provider name has four parts which are separated by dot (‘") characters. The
parts are
<domain>.<shortName>.<majorReleaseNumber>.<minorReleaseNumber>.
There are two domains: Autodesk and OSGeo. The former indicates proprietary,
and the latter open source, software.

Use Cases

B Get a fully qualified provider name in order to create a a connection. The
fully qualified name contains version numbers so having a dictionary that
maps generic provider names to the currently loaded fully qualified name
is useful.

C#

The following namespaces are used:

B OSGeo.FDO.ClientServices for FeatureAccessManager and
ProviderCollection

B OSGeo.FDO for IProviderRegistry

IProviderRegistry registry = FeatureAccessManager.GetProviderRe
gistry();

ProviderCollection providers = registry.GetProviders();

// Map provider short name to fully qualified name
Dictionary<string, string> providerAbbrToFullName = new Diction
ary<string, string>();

string shortName = null;

foreach (Provider provider in providers)

{

shortName = provider.Name.Split('."')[1l];
providerAbbrToFullName [shortName] = provider.Name;
}
o

Connection

The connection object contains a connection string property that contains
the connection parameter names and values. The connection string property
can be set by using a connection property dictionary or by assigning a

164 | Chapter 13 FDO Cookbook

connection string directly to it. The property dictionary’s methods tell you
the names of the connection parameters, their current values, and their
optionality.

Some parameters must always be set for a connection to succeed, for example,
the OSGeo.SDF File parameter, and the Autodesk.Oracle Username, Password,
and Service parameters. Some parameters need not be set if you accept the
default value. For example, the SDF ReadOnly parameter has a default setting
of false. The Oracle DataStore parameter need not be set if your objective is
to obtain the names of the available data stores within the data source. In this
case connecting with Username, Password, and Service parameters results in
a pending connection. You can then query the DataStore parameter to get
the list of available data stores, set the DataStore parameter to the value of
one of the list members and open the connection again, but this time to a
fully operational state. If you already know the name of the data store that
you want, you can set its value at the outset and open the connection fully
without the intervening step.

The following table sets out the names of the connection parameters for each
provider.

Provider Connection Parameters

Autodesk.Oracle Username, Password, Service, DataStore

Autodesk.Raster DefaultRasterFileLocation

Autodesk.SqlServer Username, Password, Service, DataStore

OsGeo.ArcSDE Server, Instance, Username, Password, Datastore
0OSGeo.Gdal DefaultRasterFileLocation

0OSGeo.KingOracle Username, Password, Service, OracleSchema, KingFdoClass
0SGeo.MySQL Username, Password, Service, DataStore

0OSGeo.ODBC Userld, Password, DataSourceName, ConnectionString,

GenerateDefaultGeometryProperty

0OSGeo.OGR DataSource, ReadOnly

Connection | 165

Provider Connection Parameters

0SGeo.PostGIS Username, Password, Service, DataStore
0OSGeo.SDF File, ReadOnly
0OSGeo.SHP DefaultFileLocation

OSGeo.SQLServerSpatial ~ Username, Password, Service, DataStore

OSGeoWFS FeatureServer, Username, Password
0OSGeo.WMS FeatureServer, Username, Password, DefaultimageHeight
Use Cases

B Create a connection to get the provider capabilities. See the Capabilities
on page 168 topic.

Get a list of the connection parameters.
Determine the optionality of a parameter.

Set the value of a parameter.

Open and close connections.

C#

The following namespaces are used:
B OSGeo.FDO.ClientServices for FeatureAccessManager
B OSGeo.FDO for IConnectionManager

B OSGeo.FDO.Connections for IConnectionlmp, IConnectionInfo,
IConnectionPropertyDictionary, ConnectionState

Create a Connection

The connection is created in the closed state.

166 | Chapter 13 FDO Cookbook

IConnectionManager connMgr = FeatureAccessManager.GetConnectionMan
ager () ;

string fullName = providerAbbrToFullName[“Oracle”]

IConnectionImp conn = connMgr.CreateConnection (fullName) as ICon

nectionImp;

Determine the Names of the Parameters

Before a connection can be opened, the connection parameters must be
identified and given values. You can query a connection to identify these
parameters. The code block shows the retrieval of the connection parameter
names into a string array.

IConnectionInfo connInfo = connection.ConnectionInfo;
IConnectionPropertyDictionary properties = connInfo.ConnectionProp
erties;

string[] names = properties.PropertyNames;

Determine the Optionality of a Parameter

The code block shows determining the optionality of the first connection
parameter.

Boolean isRequired = properties.IsPropertyRequired (names[0]) ;

Set a Parameter

The code block shows the setting of the Username parameter.

properties.SetProperty (“Username”, “EXISTINGUSER”) ;

Get the Connection String

The code block shows getting the connection string value from the connection.

string connectionString = connection.ConnectionString;

Open and Close a Connection

The code block shows opening and closing a connection. Valid connection
states are Busy, Closed, Open, and Pending.

ConnectionState connState = connection.Open() ;

ConnectionState connState = connection.Close();

Connection | 167

Capabilities

The following code samples are a representative listing of the capability
methods in each category. For a complete listing consult the API reference
documentation.

The capabilities for a provider are statically defined. You create a connection
object for the provider and use this object to query the capabilities. The
connection does not have to be open.

Some capabilities are defined as booleans, for example, support for the
DISTINCT operator in a SQL SELECT statement. Sample code for this is shown
in the Command section. Some capabilities are defined by arrays of enumerated
type values, for example, the feature commands. The presence of the capability
is determined by testing each value in the array for its equality with one of
the values in the enumerated type range; sample code that tests for the
presence of the create data store command is shown in the Command section.

The schema capabilities include a string type that defines the characters that
may not appear in a schema name and two integer types that define the
maximum decimal precision and scale.

Use Cases

B Get the capabilities of a provider.

B Write code that executes if the provider currently in use supports it.

C#

The following namespaces and types are used:

0SGeo.FDO.Commands for CommandType
0SGeo.FDO.Commands.Locking for LockType
0OSGeo.FDO.Commands.SpatialContext for SpatialContextExtentType

0SGeo.FDO.Common for GeometryComponentType, GeometryType

0SGeo.FDO.Connections.Capabilities for ICommandCapabilties,
IConnectionCapabilities, IExpressionCapabilities, IFilterCapabilities,
IGeometryCapabilities, [RasterCapabilities, [ISchemaCapabilities,
FunctionDefinitionCollection, FunctionDefinition,
ReadOnlySignatureDefinitionCollection, SignatureDefinition,

168 | Chapter 13 FDO Cookbook

ReadOnlyArgumentDefinitionCollection, ArgumentDefinition,
ThreadCapability

B OSGeo.FDO.Expression for ExpressionType

B OSGeo.FDO.Filter for ConditionType, DistanceOperations,
SpatialOperations

B OSGeo.FDO.Schema for ClassType, DataType, PropertyType

Command

ICommandCapabilities cmdCapabilities = conn.CommandCapabilities;
int[] commands = cmdCapabilities.Commands;

Boolean supportsSelectDistinct = cmdCapabilities.SupportsSelectDis

tinct ()
CommandType cmdType = (CommandType)commands[0];
Boolean supportsCreateDataStore = false;

for (int 1 = 0; i < commands.GetLength(0); i++) {
if (commands[i] == (int)CommandType.CommandType CreateDataStore)
supportsCreateDataStore = true;

Connection

IConnectionCapabilities connCapabilities = conn.ConnectionCapabil
ities;

LockType[] lockTypes = connCapabilities.LockTypes;
SpatialContextExtentType[] spatialContextExtentTypes = connCapab
ilities.SpatialContextTypes;

ThreadCapability threadCapability = connCapabilities.ThreadCapab
ility;

Boolean supportsConfiguration = connCapabilities.SupportsConfigur
ation();

Capabilities | 169

Expression

IExpressionCapabilities exprCapabilities = connection.Expression
Capabilities;

ExpressionType[] expressionTypes = exprCapabilities.Expression
Types;

FunctionDefinitionCollection functions = exprCapabilities.Func
tions;

FunctionDefinition function = functions[0];

ReadOnlySignatureDefinitionCollection signatureDefs = function.Sig
natures;
SignatureDefinition signatureDef = signatureDefs[0];
PropertyType returnPropertyType = signatureDef.ReturnPropertyType;
if (returnPropertyType == PropertyType.PropertyType DataProperty)
{
DataType returnDataType = signatureDef.ReturnType;
}
ReadOnlyArgumentDefinitionCollection arguments = signatureDef.Ar
guments;
ArgumentDefinition argDef = arguments([0];
PropertyType argPropertyType = argDef.PropertyType;
if (argPropertyType == PropertyType.PropertyType DataProperty)
{
DataType argDataType = argDef.DataType;
}

Filter

IFilterCapabilities filterCapabilities = conn.FilterCapabilities;
Boolean supportsGeodesicDistance = filterCapabilities.Supports
GeodesicDistance() ;

ConditionType[] conditionTypes = filterCapabilities.ConditionTypes;
DistanceOperations[] distanceOperations = filterCapabilities.Dis
tanceOperations;

SpatialOperations|[] spatialOperations = filterCapabilities.Spatia
lOperations;

170 | Chapter 13 FDO Cookbook

Geometry

IGeometryCapabilities geometryCapabilities = conn.GeometryCapabil
ities;

GeometryType[] geometryTypes = geometryCapabilities.GeometryTypes;
GeometryComponentType[] geometryComponentTypes = geometryCapabil
ities.GeometryComponentTypes;

int dimensionalities = geometryCapabilities.Dimensionalities;
Boolean HasZ = (dimensionalities & 1) == 1;
Boolean HasM = (dimensionalities & 2) == 2;

NOTE The dimensionalities integer contains bit-field definitions. XY is 0 because
all spatial data has at least an X and Y coordinate. Z is 1 and M is 2. Use bitwise
AND (&) to combine and bitwise OR (I) to separate.

Raster

IRasterCapabilities rasterCapabilities = conn.RasterCapabilities;

Boolean supportsRaster = rasterCapabilities.SupportsRaster();

Schema

ISchemaCapabilities schemaCapabilities = conn.SchemaCapabilities;
DataType[] dataTypes = schemaCapabilities.DataTypes;

ClassType[] classTypes = schemaCapabilities.ClassTypes;

string reservedCharactersForName = schemaCapabilities.ReservedChar
actersForName;

int maximumDecimalPrecision = schemaCapabilities.MaximumDecimalPre
cision;

DataType[] supportedAutoGeneratedTypes = schemaCapabilities.Suppor
tedAutoGeneratedTypes;

DataType[] supportedIdentityPropertyTypes = schemaCapabilities.Sup
portedIdentityPropertyTypes;

Boolean supportsAutoIdGeneration = schemaCapabilities.SupportsAut
oIdGeneration;

Data Store

The Sql Server, SQL Server Spatial, Oracle, MySQL, PostGIS, and SDF providers
support the following data store commands, create, destroy, and, with the
exception of SDF, list. SDF is a file-based provider, and the rest are
RDBMS-based.

Data Store | 171

By default the Sql Server, Oracle, MySQL, and SDF providers create data stores
that contain FDO metadata. By default the SQL Server Spatial provider creates
a data store that does not contain the FDO metadata. To make this provider
create a data store that does contain the FDO metadata, you must set the
IDataStorePropertyDictionary property IsFdoEnabled to true. The PostGIS
provider creates a data store without the FDO metadata.

A provider uses the FDO metadata to:

B Assign a default spatial context to a Geometric Property Definition during
schema creation.

When connected to the SDF Provider, the CreateDataStore command creates
an SDF file, and the DestroyDataStore command deletes it. There cannot be
multiple data stores in an SDF file and so there is no need for the list command.
Unlike the RDBMS-based providers, you do not have to open a pending
connection in order to create and execute the CreateDataStore command.
Before executing the DestroyDataStore command close the connection.

For the RDBMS-based providers creating a data store means creating a container
within a database. There can be many data stores within a database, and the
list command lists them.

To create a data store in one of these RDBMS-based providers you open a
pending connection using an administrator account name and password and
then execute the CreateDataStore command. Once you have created the data
store, you close the administrator connection and open a normal user
connection. This time you give a value to the DataStore connection parameter
and open the connection to a fully operational state. Before executing the
DestroyDataStore command, close the connection, unset the DataStore
connection parameter and reopen it using the administrator account name
and password in the pending state.

C#

The following namespaces are used:
B OSGeo.FDO.Commands.DataStore

B OSGeo.FDO.Commands

172 | Chapter 13 FDO Cookbook

ICreateDataStore createDS = conn.CreateCommand (CommandType.Com
mandType CreateDataStore) as ICreateDataStore;
IDataStorePropertyDictionary properties = createDS.DataStoreProp
erties;
properties.SetProperty(paramName, paramValue);
createDS.Execute () ;

IListDataStores 1istDS = conn.CreateCommand (CommandType.Command
Type ListDataStores) as IListDataStores;

IDataStoreReader reader = listDS.Execute();

IDestroyDataStore destroyDS = conn.CreateCommand (CommandType.Com
mandType DestroyDataStore) as IDestroyDataStore;
IDataStorePropertyDictionary properties = destroyDS.DataStoreProp
erties;
properties.SetProperty (paramName, paramValue);
destroyDS.Execute () ;

User Management

The providers may be categorized into five groups with respect to user
management. The grouping criteria is the method used to create the username.

The first group consists of the Autodesk.Oracle provider, which has access to
an FDO API for user management.

The second group consists of MySQL, SqlServer, and SQLServerSpatial. These
providers support the SQLCommand, which can be used to create users.

The third group consists of ODBC. A username and password may be quired
to connect depending on the back-end data store. On XP you use the ODBC
Data Source Administrator tool to configure the username.

The third group consists of the web server providers: WFS and WMS. A
username and password may be required depending on the site.

The fourth group consists of the file-based providers, which do not require a

username and password.

The FDO User Management API

The Autodesk.Oracle provider has access to an FDO API for user management.
Before you can add a user, you must have added the f_user_role to the database
as described in the Preparations topic at the beginning of this chapter. During
the add user operation, the f_user_role is assigned to the new user. You must

User Management | 173

open a pending connection using an administrator account name and password
to add or drop a user.

C#

The Autodesk.Fdo.Fdo.Utilities.UserMgr namespace is used.

IUserManagerImp userMgr = new IUserManagerImp (connection);
userMgr.AddUser ("AUserName", "APassword");
DbUserReader reader = userMgr.GetDbUsers();

userMgr.DropUser ("AUserName") ;

The SQLCommand Method for User Management

Provider

Add a user Drop a user List users

MySQL

CREATE USER ‘AUserName’ DROP USER ‘AUser- SELECT user FROM mysq|l.user
IDENTIFIED BY ‘APassword’; Name’; WHERE user = ‘AUserName’;
GRANT ALL ON *.* TO ‘AUs-

erName’;

SqlServer and
SQLServerSpa-
tial

CREATE LOGIN AUserName EXEC sp_droplogin SELECT name FROM sys.serv-
WITH password = ‘APass- @loginame =‘AUser- er_principals WHERE name =
word’; EXEC sp_addsrvrole- Name’; ‘AUserName’;

member @loginame = ‘AUs-

erName’, @rolename =

‘sysadmin’;

C#

The code samples use the SQL syntax supported by MySQL in the strings
passed to the FDO API command calls.

The following namespaces are used:
B OSGeo.FDO.Commands.SQL

B OSGeo.FDO.Commands

174 | Chapter 13 FDO Cookbook

// create a user
ISQLCommand sglCommand = conn.CreateCommand (CommandType.Command
Type SQLCommand) as ISQLCommand;

sglCommand.SQLStatement = "create user 'AUserName' identified by
'APassword'";

int returnvVal = sglCommand.ExecuteNonQuery () ;
sglCommand.SQLStatement = "grant all on *.* to 'AUserName'";
returnVal = sglCommand.ExecuteNonQuery() ;

// drop a user

ISQLCommand sglCommand = conn.CreateCommand (CommandType.Command
Type SQLCommand) as ISQLCommand;

sglCommand.SQLStatement = "drop user 'AUserName'";

int returnval = sglCommand.ExecuteNonQuery () ;

// list users
ISQLCommand sglCommand = conn.CreateCommand (CommandType.Command

Type SQLCommand) as ISQLCommand;

sglCommand.SQLStatement = "select user from mysgl.user where user
= 'AUserName'";
ISQLDataReader reader = sglCommand.ExecuteReader();

reader.Close () ;

Spatial Context

A spatial context specifies a coordinate system and an extent for a set of
geometries. The spatial context object has a Name property. The value of the
Name property is assigned to the SpatialContextAssociation property of the
GeometricPropertyDefinition object that defines a feature or non-feature
geometry belonging to a feature class. In this way a coordinate system and
extent is associated with geometry values inserted into the data store as part
of instances of the class. Example code showing this association is contained
in the Basic Schema Operations on page 178 topic.

NOTE It is worth emphasizing that each geometric property definiton in a feature
class definition can have a different spatial context. This mechanism replaces that
of the active spatial context.

The data stores created by the Oracle, Sql Server, MySQL, and optionally, the
SQL Server Spatial providers contain metadata that supports the assignment
of a default spatial context to a Geometric Property Definition during schema

Spatial Context | 175

creation in the event that the user has not explicitly assigned one. The attribute
values of the default spatial context are set out in the following table.

Attribute Value
Name Default
CoordinateSystem <no value>

CoordinateSystemWkt <no value>

ExtentType SpatialContextExtentType_Static

Extent POLYGON((-2000000 -2000000, 2000000 -2000000,
2000000 2000000, -2000000 2000000, -2000000 -2000000))

C#

The code samples show how to create a spatial context and how to get the
spatial contexts from a data store.

The following namespaces are used:
B OSGeo.FDO.Commands.SpatialContext
B OSGeo.FDO.Geometry

B OSGeo.FDO.Connections

176 | Chapter 13 FDO Cookbook

// get the spatial contexts from a data store
IGetSpatialContexts getSpatialContexts = connection.CreateCom
mand (CommandType .CommandType GetSpatialContexts) as IGetSpatialCon
texts;
ISpatialContextReader reader = getSpatialContexts.Execute();
string name = null;
string coordSys = null;
string wellKnownText = null;
string desc = null;
FgfGeometryFactory geomFactory = new FgfGeometryFactory();
IGeometry geom = null;
string extent = null;
SpatialContextExtentType extentType;
double xyTolerance;
double zTolerance;
while (reader.ReadNext ())
{
name = reader.GetName () ;
coordSys = reader.GetCoordinateSystem() ;
wellKnownText = reader.GetCoordinateSystemWkt () ;
desc = reader.GetDescription();
geom = geomFactory.CreateGeometryFromFgf (reader.GetExtent());
extent = geom.Text;
extentType = reader.GetExtentType()
xyTolerance = reader.GetXYTolerance();
zTolerance = reader.GetZTolerance();
}

reader.Dispose () ;

Spatial Context | 177

// create a spatial context whose coordinate system is WGS84 and
whose extent is the maximum

// create the extent

DirectPositionImpl lowerLeft = new DirectPositionImpl ();
lowerLeft.X = -180.0;
lowerLeft.Y = -90.0;
DirectPositionImpl upperRight = new DirectPositionImpl () ;

upperRight.X 180.0;

upperRight.Y = 90.0;

IEnvelope envelope = geomFactory.CreateEnvelope (lowerLeft, upper
Right);

IGeometry geom = geomFactory.CreateGeometry (envelope) ;

byte[] extent = geomFactory.GetFgf (geom) ;

ICreateSpatialContext createSpatialContext = connection.CreateCom

mand (CommandType.CommandType CreateSpatialContext) as ICreateSpa

tialContext;

createSpatialContext.CoordinateSystem = "";

createSpatialContext.CoordinateSystemWkt = wgs84Wkt;

createSpatialContext.Description = "This Coordinate System is used
for GPS.";

// a static extent is defined once and never changed

// a dynamic extent grows to accommodate the geometries added to

the data store

createSpatialContext.ExtentType = SpatialContextExtentType.Spatial
ContextExtentType Static;

createSpatialContext.Extent = extent;

// the value of Name is assigned to the SpatialContextAssociation
attribute of a GeometricPropertyDefinition object during the
creation of the logical feature schema

// in this way a coordinate system and extent is associated with
the geoemtries

createSpatialContext.Name = "WGS84 Spatial Context";
createSpatialContext.Execute();

Basic Schema Operations

All providers allow you to describe a schema, but only SDF, SHP, MySQL,
PostGIS, SqlServer, SQLServerSpatial, KingOracle, and Oracle allow you to
apply and destroy a schema.

178 | Chapter 13 FDO Cookbook

C#
The code samples show how to describe, apply and destroy a schema.
The following namespaces are used:
B OSGeo.FDO.Commands.Schema
B OSGeo.FDO.Commands
B OSGeo.FDO.Schema
// describe a schema

IDescribeSchema descSchema = conn.CreateCommand (CommandType.Com

mandType DescribeSchema) as IDescribeSchema;

FeatureSchemaCollection schemas = descSchema.Execute () ;
FeatureSchema schema = schemas|[0];

ClassCollection classes = schema.Classes;

Class featureClass = classes[0];

PropertyDefinitionCollection properties = featureClass.Properties;
PropertyDefinition property = properties[0];

PropertyType propertyType = property.PropertyType;

if (propertyType == PropertyType.PropertyType DataProperty) {
DataPropertyDefinition dataPropDef = property as DataPropertyDefin
ition;

DataType dataType = dataPropDef.DataType;

}

Basic Schema Operations | 179

// create and apply a schema

FeatureSchema schema = new FeatureSchema ("AnApplicationSchema",
"This schema contains one feature class.");

FeatureClass featClass = new FeatureClass ("AFeatureClass", "This
feature class contains one identity property one data property and

a feature geometry.");

PropertyDefinitionCollection properties = featClass.Properties;
DataPropertyDefinitionCollection idProperties = featClass.Identi
tyProperties;

DataPropertyDefinition idProp = new DataPropertyDefinition ("ID",
"This is the identity property");

idProp.DataType = DataType.DataType Int64;
idProp.IsAutoGenerated = true;

idProp.Nullable = false;

idProp.ReadOnly = true;
properties.Add (idProp) ;

idProperties.Add (idProp) ;

DataPropertyDefinition int32Prop = new DataPropertyDefini
tion("Int32Prop", "This is an Int32 property");
int32Prop.DataType = DataType.DataType Int32;

properties.Add (int32Prop) ;

// add the feature geometry

GeometricPropertyDefinition featGeomProp = new GeometricProperty
Definition ("FeatGeomProp", "This is the feature geometry.");

// associate this geometric property with a spatial context

// you must have already added the named context to the data store
// if this property is not set, it is assigned the default spatial
context

// see the Spatial Context topic to read a description of the de
fault spatial context

featGeomProp.SpatialContextAssociation = "XY-M Spatial Context";
// by default this geometric property can contain geometries that
may be classified as point, curve, surface or solid

// also by default this geometric property cannot contain geomet
ries that have a Z ordinate or a measure attribute
properties.Add (featGeomProp) ;

// without the following line you would be adding a non-feature
geometry

featClass.GeometryProperty = featGeomProp;

ClassCollection classes = schema.Classes;

classes.Add (featClass) ;

// apply the schema

180 | Chapter 13 FDO Cookbook

IApplySchema applySchema = conn.CreateCommand (CommandType.Command
Type ApplySchema) as IApplySchema;
applySchema.FeatureSchema = schema;

applySchema.Execute () ;

// destroy the schema

IDestroySchema destroySchema = conn.CreateCommand (CommandType.Com
mandType DestroySchema) as IDestroySchema;
destroySchema.SchemaName = "AnApplicationSchema";

destroySchema.Execute () ;

Insert Data

All providers except Gdal, Raster, WFS, and WMS allow you to insert data.

C#

The code sample shows how to insert a feature consisting of a data value and
a geometry value.

The following namespaces are used:

0SGeo.FDO.Commands
0OSGeo.FDO.Commands.Feature
OSGeo.FDO.Expression
0OSGeo.FDO.Geometry

Insert Data | 181

Identifier className = new Identifier ("FeatureClass");
IInsert insert = conn.CreateCommand (CommandType.CommandType Insert)
as IInsert;
insert.FeatureClassName = className;
PropertyValueCollection values = insert.PropertyValues;
// add the Int32 value to the insert command
int32Value = new Int32Value (5);
int32PropVal = new PropertyValue ("Int32Prop", int32Value);
values.Add (int32Propval) ;
// add the feature geometry to the insert command
FgfGeometryFactory geomFactory = new FgfGeometryFactory();
DirectPositionImpl positionl = new DirectPositionImpl (1.0, 1.0);
IPoint point = geomFactory.CreatePoint (positionl);
GeometryValue geomVal = new GeometryValue (geomFactory.Get
Fgf (point)) ;
PropertyValue geomPropVal = new PropertyValue ("FeatGeomProp",
geomVal) ;
values.Add (geomPropVal) ;
// insert the feature
IFeatureReader reader = insert.Execute();

reader.Close () ;

Select Data

All providers allow you to select data.

C#

In the following code sample the filter is set to retrieve values for each feature
in the database. Without adding a computed identifier to the select command'’s
property collection, the select command would return all of the property
values for each feature in the database. In this example, the computed identifier
contains a function expression that converts the DateTime value in the
DateTimeProp property to a string and returns the string. So the select returns
a set of DateTime strings.

The following namespaces are used:

0SGeo.FDO.Commands
0SGeo.FDO.Commands.Feature
0OSGeo.FDO.Expression

182 | Chapter 13 FDO Cookbook

B OSGeo.FDO.Filter

Identifier className = new Identifier ("FeatureClass");

ISelect select = conn.CreateCommand (CommandType.CommandType Select)
as ISelect;

select.FeatureClassName = className;

Filter filter = Filter.Parse("ID >= 0");

select.Filter = filter;

ComputedIdentifier computedId = Expression.Parse (" (ToString (Date
TimeProp) as computedId)") as ComputedIdentifier;
select.PropertyNames.Add (computedId) ;

IFeatureReader reader = select.Execute();

reader.Close () ;

Select Aggregate Data

All providers except the PostGIS provider, allow you to select aggregate data.

C#

In the following code sample the filter is set to retrieve values for each feature
in the database. The computed identifier contains a function expression that
takes the average of all of the values in the property whose name is Int32Prop
and returns a double.

The following namespaces are used:
0OSGeo.FDO.Commands
0SGeo.FDO.Commands.Feature

0OSGeo.FDO.Expression

OSGeo.FDO Filter

Select Aggregate Data | 183

Identifier className = new Identifier ("FeatureClass");
ISelectAggregates selectAggregates = conn.CreateCommand (Command
Type.CommandType SelectAggregates) as ISelectAggregates;
selectAggregates.FeatureClassName = className;

Filter filter = Filter.Parse("ID >= 0");

selectAggregates.Filter = filter;

ComputedIdentifier computedId = Expression.Parse (" (Avg(Int32Prop)
as computedId)") as ComputedIdentifier;
selectAggregates.PropertyNames.Add (computedId) ;

IDataReader reader = selectAggregates.Execute();

reader.Close();

Delete Data

All providers except Gdal, Raster, WFS, and WMS allow you to delete data.

C#

The following namespaces are used:

0SGeo.FDO.Commands
0OSGeo.FDO.Commands.Feature
OSGeo.FDO.Expression
OSGeo.FDO Filter

// delete all of the data

// ID is the name of the identity property

Filter filter = Filter.Parse("ID >= 0");

Identifier className = new Identifier ("FeatureClass");

IDelete delete = conn.CreateCommand (CommandType.CommandType Delete)
as IDelete;

delete.FeatureClassName = className;

delete.Filter = filter;

int numDeleted = delete.Execute();

Schema Overrides

When FDO connects to a datastore with an existing schema and describes the
schema, it maps the native data types to FDO data types to create a default

184 | Chapter 13 FDO Cookbook

physical to logical schema mapping. You can create a schema mapping that
overrides the default FDO mapping. This schema override must be applied
every time that you connect to the data store. Use the provider’s Schema
Override API to write a program that defines the overrides and writes them
to an XML configuration file. Thereafter, before opening the connection to
the provider, set the connection objects’s configuration property to point to
the XML configuration file.

The key elements to a schema override are an FDO feature schema and a
mapping of column names in the existing table to property names in the FDO
feature schema. The ODBC provider supports the mapping of two column
names in an existing table to a 2D FDO point geometry property and optionally
supports the mapping of three columns to a 3D point geometry property. In
the event that the mapping includes an FDO geometry property, a spatial
context definition should be provided.

The description given here is based on sample code written to define a schema
override for a table in a Microsoft Access database. The following table shows
the name of the column in the Access database, which is the same as the
default FDO property name, the FDO property name assigned by the schema
override, a description of the contents of the column, the FDO data type
assigned by the default schema mapping, and the FDO data type assigned by
the schema override.

The default schema mapping of the CITY_ID and POPULATION columns are
overriden to assign them different data types than the default ones and to
give them different names. A change in case counts as a change in name. The
default schema mapping of the LATITUDE and LONGITUDE columns are
overriden because they are combined into a single property that has a different
name and a different type than the defaults. The default schema mapping of
the NAME, COUNTRY, and CAPITAL columns are overriden to assign them
different names than the defaults. The default schema mapping of the URL
column is not overriden and retains its default type and name.

Column Name Override Column Contents Default FDO Override
(Default Property Property Data Type FDO Data
Name) Name Type
CITY_ID Id consecutive sequence of integers Int16 Int64

from 1 to < 1000

NAME

Name Names String String

COUNTRY

Country Names String String

Schema Overrides | 185

Column Name Override Column Contents Default FDO Override
(Default Property Property Data Type FDO Data
Name) Name Type
CAPITAL Captial ‘N" or ‘Y’ String String
URL Not over- null String Not over-
riden riden
POPULATION Population positive integers < 17,000,000 Double Int32
LATITUDE Geometry positive and negative decimals Double Geometry
LONGITUDE Geometry positive and negative decimals Double Geometry

First a conceptual view of how to create the XML configuration file for a
schema override is presented and then a code view is presented. The override
includes a geometry property and so a spatial context is defined as well.

1

2
3
4

C#

Open the XML file
Create a spatial context for the geometry and write it to the XML file
Create the FDO feature schema and write it to the XML file

Create a connection to the provider and get a reference to the
connection'’s physical schema mapping.

Use the reference to the connection’s physical schema mapping and the
Schema Override API to create the schema override whereby the logical
fields in the feature schema are associated with columns in the database
table

Write the schema override to the XML file

Close the XML file.

The following namespaces are used.

B OSGeo.FDO.Common..Io

B OSGeo.FDO.Common.Xml

186 | Chapter 13 FDO Cookbook

B OSGeoFDO.Geometry
B OSGeo.FDO.Schema

Create the XML Schema Override Configuration File

Open the XML File

IoFileStream writeFileStream = new IoFileStream("Cities.xml"™, "w");

XmlWriter writer = new XmlWriter (writeFileStream) ;

Create a Spatial Context and Write It to the XML File

XmlSpatialContextFlags flags = new XmlSpatialContextFlags() ;
XmlSpatialContextWriter spatialContextWriter = new XmlSpatialCon

textWriter (writer, flags);

DirectPositionImpl lowerLeft = new DirectPositionImpl () ;
lowerLeft.X = -180.0;
lowerLeft.Y = -90.0;

DirectPositionImpl upperRight = new DirectPositionImpl () ;
upperRight.X = 180.0;
upperRight.Y = 90.0;
FgfGeometryFactory geomFactory = new FgfGeometryFactory()
IEnvelope envelope = geomFactory.CreateEnvelope (lowerLeft, upper
Right);
IGeometry geom = geomFactory.CreateGeometry (envelope);
byte[] extent = geomFactory.GetFgf (geom) ;
spatialContextWriter.CoordinateSystem = "WGS 84";
spatialContextWriter.CoordinateSystemWkt = "GEOGCS [\"Longitude
/ Latitude (WGS 84)\", DATUM [\"WGS 84\", SPHEROID [\"WGS 84\",
6378137, 298.2572235631]1, PRIMEM [\"Greenwich\", 0.000000], UNIT
\"Decimal Degree\", 0.01745329251994330]11";
spatialContextWriter.Description = "This Coordinate System is used
for GPS.";
spatialContextWriter.ExtentType = SpatialContextExtentType.Spatial
ContextExtentType Static;
spatialContextWriter.Extent = extent;
spatialContextWriter.Name = "WGS84";
spatialContextWriter.XYTolerance = 0.001;
// the next line writes the XML declaration, the opening tag for
the fdo:DataStore element
// and the gml:DerivedCRS element to the XML file
spatialContextWriter.WriteSpatialContext () ;

Schema Overrides | 187

Create the Feature Schema and Write It to the XML File

188 | Chapter 13 FDO Cookbook

FeatureSchema schema = new FeatureSchema ("World", "Logical feature
schema") ;

FeatureClass featClass = new FeatureClass ("Cities", "This feature
class contains one identity property, many data properties, and

a feature geometry.");

PropertyDefinitionCollection properties = featClass.Properties;
DataPropertyDefinitionCollection idProperties = featClass.Identi
tyProperties;

DataPropertyDefinition idProp = new DataPropertyDefinition ("Id",
"This is the unique id number for the city.");

idProp.DataType = DataType.DataType Int64;
idProp.IsAutoGenerated = false;

idProp.Nullable = false;

idProp.ReadOnly = true;

properties.Add (idProp) ;

idProperties.Add (idProp) ;

DataPropertyDefinition nameProp = new DataPropertyDefini
tion("Name", "This is the name of the City.");
nameProp.DataType = DataType.DataType String;

nameProp.Length = 64;

properties.Add (nameProp) ;

DataPropertyDefinition countryProp = new DataPropertyDefini
tion("Country", "This is country that contains the city.");
countryProp.DataType = DataType.DataType String;
countryProp.Length = 64;

properties.Add (countryProp) ;

DataPropertyDefinition populationProp = new DataPropertyDefini
tion ("Population", "This is the population of the city.");

populationProp.DataType = DataType.DataType Int32;

properties.Add (populationProp) ;

DataPropertyDefinition capitalProp = new DataPropertyDefini
tion("Capital", "This is 'Y' or 'N' to say whether the city is the
capital of the country.");

capitalProp.DataType = DataType.DataType String;
capitalProp.Length = 1;

properties.Add (capitalProp) ;

GeometricPropertyDefinition featGeomProp = new GeometricProperty
Definition ("Geometry", "This is the feature geometry.");
featGeomProp.GeometryTypes = (int)GeometricType.Geometric

Type Point;

featGeomProp.HasElevation = false;

featGeomProp.HasMeasure = false;

properties.Add (featGeomProp) ;

Schema Overrides | 189

featClass.GeometryProperty = featGeomProp;

ClassCollection classes = schema.Classes;

classes.Add (featClass) ;

// the next line writes the xs:schema element to the XML file

schema.WriteXml (writer);

190 | Chapter 13 FDO Cookbook

Create the Physical Schema Mapping and Write It to the XML File

Schema Overrides | 191

// set the connection to point

// at the Microsoft Access database file

//whose Data Source Name (DSN) has been

// defined using the Data Sources (ODBC)

// Windows XP administrative tool

connection.ConnectionString = "DataSourceName=" + dataSourceName;
// get a reference to the PhysicalSchemaMapping object contained
in the connection

PhysicalSchemaMapping connectionSchemaMapping = connection.CreateS
chemaMapping () ;

// use that reference to create an override physical schema mapping
// the override definition associates columns in the columns of
the Access database with property names in the FDO feature schema

OvPhysicalSchemaMapping mapping = new OvPhysicalSchemaMapping (con
nectionSchemaMapping, false);

mapping.Name = "World";

OvClassCollection overrideClasses = mapping.Classes;

OvClassDefinition overrrideClassDef = new OvClassDefinition("Cit
ies");

OvPropertyDefinitionCollection overrideProperties = overrride
ClassDef.Properties;

// associate the table in the Access database with the override
class definition

OvTable table = new OvTable ("Cities");

overrrideClassDef.Table = table;

// associate the columns in the table in the Access database with
the properties in the FDO feature schema

OvColumn column = null;

OvGeometricPropertyDefinition overridGeomProp = new OvGeometric
PropertyDefinition ("Geometry") ;
overridGeomProp.GeometricColumnType = 0SGeo.FDO.Providers.Rd

bms.Override.OvGeometricColumnType.OvGeometricColumnType Double;
overridGeomProp.GeometricContentType = 0SGeo.FDO.Providers.Rd

bms.Override.OvGeometricContentType.OvGeometricContentType Ordin

ates;
overridGeomProp.XColumnName = "LONGITUDE";
overridGeomProp.YColumnName = "LATITUDE";

overrideProperties.Add (overridGeomProp) ;

OvDataPropertyDefinition overrideIdProp = new OvDataPropertyDefin
ition ("Id");

column = new OvColumn ("CITY ID"); overrideIdProp.Column = column;

overrideProperties.Add (overrideIdProp) ;

192 | Chapter 13 FDO Cookbook

OvDataPropertyDefinition overrideNameProp = new OvDataPropertyDefin
ition ("Name") ;
column = new OvColumn ("NAME") ;
overrideNameProp.Column = column;
overrideProperties.Add (overrideNameProp) ;
OvDataPropertyDefinition overrideCountryProp = new OvDataProperty
Definition ("Country");
column = new OvColumn ("COUNTRY") ;
overrideCountryProp.Column = column;
overrideProperties.Add (overrideCountryProp) ;
OvDataPropertyDefinition overridePopulationProp = new OvDataProp
ertyDefinition ("Population");
column = new OvColumn ("POPULATION") ;
overridePopulationProp.Column = column;

overrideProperties.Add (overridePopulationProp) ;
OvDataPropertyDefinition overrideCapitalProp = new OvDataProperty
Definition ("Capital");

column = new OvColumn ("CAPITAL");

overrideCapitalProp.Column = column;

overrideProperties.Add (overrideCapitalProp) ;

overrideClasses.Add (overrideClassDef) ;

// write the override definition to the XML file

XmlFlags flags = new XmlFlags();

// the next line writes the SchemaMapping element to the XML file
mapping.WriteXml (writer, flags);
mapping.Dispose () ;

Write the Closing Tag and Close the XML File

// the next line writes the closing tag of the fdo:DataStore ele
ment to the XML file

writer.WriteEndElement () ;

writer.Close () ;

writer.Dispose();

writeFileStream.Close();

writeFileStream.Dispose () ;

Configure a Connection to Use the Schema Override

The connection object contains a property whose value points to the XML
configuration file.

Schema Overrides | 193

IConnection connection = connMgr.CreateConnection (providerName) ;
IoFileStream configurationFileStream = new IoFileStream("Cit
ies.xml", "x");

connection.Configuration = configurationFileStream;
connection.ConnectionString = "DataSourceName=" + dataSourceName;

connection.Open() ;

Xml Serialize/Deserialize

C#

This code sample serializes the spatial context and feature schema of a data
store to an xml file and then deserializes it in another data store.

This is the C# code.

Namespaces

The following namespaces are used:

0SGeo.FDO.Commands.Schema
0SGeo.FDO.Common.lo
0SGeo.FDO.Common.Xml
0OSGeo.FDO.Schema
0SGeo.FDO.Xml

194 | Chapter 13 FDO Cookbook

Serialize

// open the xml file

XmlWriter xmlWriter = new XmlWriter (xmlFilename) ;

// serial the spatial contexts

XmlSpatialContextWriter spatialContextWriter = new XmlSpatialCon
textWriter (xmlWriter);
XmlSpatialContextSerializer.XmlSerialize (connection, spatialContex
tWriter);

// serialize the feature schemas

IDescribeSchema descSchema = connection.CreateCommand (Command
Type.CommandType DescribeSchema) as IDescribeSchema;
FeatureSchemaCollection schemas = descSchema.Execute () ;
schemas.WriteXml (xmlWriter) ;

// clean up

spatialContextWriter.Dispose () ;

xmlWriter.Dispose();

C#| 195

Deserialize

// deserialize the spatial contexts
JoFileStream fileStream = new IoFileStream(xmlFilename, "r");
XmlReader xmlReader = new XmlReader (fileStream);
XmlSpatialContextReader xScReader = new XmlSpatialContextReader (xm
1Reader) ;
XmlSpatialContextSerializer.XmlDeserialize (connection, xScReader) ;
fileStream.Reset () ;
// deserialize the schema
FeatureSchemaCollection schemas = new FeatureSchemaCollec
tion(null);
schemas.ReadXml (fileStream) ;
IApplySchema applySchema = connection.CreateCommand (CommandType.Com
mandType ApplySchema) as IApplySchema;
FeatureSchema schema = null;
for (int i = 0; 1 < schemas.Count; i++)
{
schema = schemas.get Item(i);
applySchema.FeatureSchema = schema;
applySchema.Execute () ;
}
fileStream.Reset () ;
// clean up
xmlReader.Dispose() ;

fileStream.Close () ;

Geometry

The geometry code samples are divided into two parts. The first is constructing
geometries. The second is deconstructing them, that is, extracting information
from the geometry objects.

Construction

Geometries can be constructed using a set of scaffolding classes, which includes
a geometry factory class, or they can be constructed using the geometry factory
class from text specifications. The syntax for the text specifications is described
in the Geometry Value section in the Filter and Expression Languages chapter.

196 | Chapter 13 FDO Cookbook

What follows here is a description of geometry construction using the
scaffolding classes.

Some geometries are constructed using a two step procedure. First, create
coordinates and then create the geometry. Some geometries require an
intermediate step. Use the coordinates to create subcomponents and then use
the subcomponents to create the geometry. The construction of some
geometries requires the use of helper collection classes. Some of these classes
are collections of geometries and some are collections of geometry
subcomponents.

Simple geometries like point and line are constructed directly from coordinates.
Complex geometries like curved lines and polygons are constructed from
geometry subcomponents like arc and line segments and rings. In general
subcomponents are constructed from coordinates. The exception is the ring,
which is constructed from arc and line segments. The glue is the helper
collection classes for coordinates, segments, and rings.

A geometry object may consist of homogeneous or heterogeneous aggregations
of points, lines, and polygons. The glue is helper collection classes for points,
lines, and polygons.

C# Namespaces

The following namespaces are used:
m OSGeo.FDO.Common
B OSGeo.FDO.Geometry

C# Geometry Scaffolding Classes

The scaffolding classes used to construct the simple, complex, and aggregate
geometries are the following:

B the IDirectionPosition class used to construct positions (coordinates),

B the FgfGeometryFactory class used to construct the geometry
subcomponents and geometries,

B the geometry subcomponent classes: ILineStringSegment,
ICircularArcSegment, ILinearRing, and IRing,

Construction | 197

B the helper collection classes: PointCollection, LineStringCollection,
CurveSegmentCollection, LinearRingCollection, RingCollection,
PolygonCollection, CurvePolygonCollection, and GeometryCollection.

IDirectPositionlmpl

The IDirectPosition is the basic building block of geometries. Use its constructor
to define a coordinate. Use instances of it to define the IPoint and ILineString
geometries or to define the geometry subcompoonents ILinearRing,
ICircularArcSegment, and ILineStringSegment.

DirectPositionImpl pos00 = new DirectPositionImpl (0.0, 0.0);

FgfGeometryFactory

Use an instance of this class to do the following:
B create geometry subcomponents used to construct IGeometry-based objects
B create IGeometry-based objects

B convert IGeometry-based objects into binary-formatted geometries used
for data store inserts

B convert binary-formatted geometries retrieved during data store queries
into IGeometry-based objects

FgfGeometryFactory geomFactory = new FgfGeometryFactory();

Geometry Subcomponents

The following subcomponents are used in the construction of geometries and
geometry subcomponents:

B The ICircularArcSegment and ILineStringSegment subcomponents are used
to construct the ICurveString geometry and the IRing geometry
subcomponent.

B The I[LinearRing subcomponent is used to contruct the IPolygon geometry.

B The IRing subcomponent is used to construct the ICurvePolygon geometry.

198 | Chapter 13 FDO Cookbook

ICircularArcSegment

The creation of an instances uses IDirectPositionImpl objects, which
respectively define a start position, a mid point, and an end position for the
arc.

ICircularArcSegment as012122 = geomFactory.CreateCircularArcSeg

ment (pos01l, pos2l, pos22);

ILineStringSegment

The creation of an instance uses a DirectPositionCollection, which contains
IDirectionPositionImpl objects.

positions.Add (pos23);

positions.Add (pos30) ;

positions.Add (pos33);

ILineStringSegment 15233033 = geomFactory.CreateLineStringSeg
ment (positions) ;

positions.Clear () ;

ILinearRing

The creation of an instance uses a DirectPositionCollection, which contains
IDirectionPositionImpl objects.

positions.Add (pos01

)i
positions.Add(pos2l);
)

’

positions.Add (posl2

(
(
(
positions.Add(pos01) ;
ILinearRing 1r01211201 = geomFactory.CreatelLinearRing(positions);

positions.Clear () ;
IRing
An IRing is constructed using a CurveSegmentCollection. This collection can

contain ICircularArcSegment and ILineStringSegment objects.

curveSegments.Add (as1340n20) ;
curveSegments.Add (1sn2013) ;
IRing rAsl1l340n20Lsn2013 = geomFactory.CreateRing (curveSegments) ;

curveSegments.Clear () ;

Construction | 199

Collection Classes

The following collection classes are used during the construction of the various
geometries:

// Contains IDirectPositionImpl ojbects
DirectPositionCollection positions = new DirectPositionCollec
tion () ;

// Contains IPoint objects

PointCollection points = new PointCollection();

// Contains ILineString objects

LineStringCollection lines = new LineStringCollection();

// Contains ICircularArcSegment and ILineStringSegment objects
CurveSegmentCollection curveSegments = new CurveSegmentCollec
tion () ;

// Contains ICurveString objects

CurveStringCollection curves = new CurveStringCollection();
// Contains ILinearRing objects

LinearRingCollection linearRings = new LinearRingCollection();
// Contains IRing objects

RingCollection curveRings = new RingCollection();

// Contains IPolygon objects

PolygonCollection linearPolygons = new PolygonCollection();
// Contains ICurvePolygon objects

CurvePolygonCollection curvePolygons = new CurvePolygonCollec
tion () ;

GeometryCollection geometries = new GeometryCollection();

C# Geometries Constructed using
IDirectPositionimpl
These geometries are [Point and ILineString.

IPoint

The creation of an instances uses an IDirectionPositionImpl object.

IPoint pt00 = geomFactory.CreatePoint (pos00) ;

200 | Chapter 13 FDO Cookbook

ILineString

The creation of an instances uses a DirectPositionCollection object, which is
composed of IDirectionPositionImpl object.

positions.Add (pos01) ;
positions.Add(pos2l) ;
ILineString 1ine0121 = geomFactory.CreatelLineString(positions);

positions.Clear () ;

C# Geometries Constructed Using Geometry
Subcomponents

These geometries are ICurveString, IPolygon, and ICurvePolygon.

ICurveString

The creation of an instance uses a CurveSegmentCollection object, which
contains an ICircularArcSegment object and an ILineStringSegment object.

// ICurveString composed of a circular arc segment and a line
string segment

curveSegments.Add (as022223) ;

curveSegments.Add (1s233033) ;

ICurveString csAs022223Ls233033 = geomFactory.CreateCur
veString (curveSegments) ;

curveSegments.Clear () ;

IPolygon

The creation of an instance uses an ILinearRing object for the exterior ring
and a LinearRingCollection object, composed of ILinearRing objects, for the
interior rings.

// IPolygon with one exterior ring and no interior rings

IPolygon polyEr01211201 = geomFactory.CreatePolygon(1r01211201,

null) ;

// IPolygon with one exterior ring and one interior ring
linearRings.Add (1r01211201) ;

polyEr13n204013Ir01211201 = geomFactory.CreatePolygon (1r13n204013,
linearRings) ;

linearRings.Clear () ;

Construction | 201

ICurvePolygon

The creation of an instance uses an IRing object for the exterior ring and a
RingCollection object, composed of an IRing object, for the interior rings.

// ICurvePolygon with one exterior ring, rAsl1340n20Lsn2013, which
is composed of an arc segment and a line segment

// and one interior ring, rLs0121Ls2112Ls1201, which is a triangle
made of three line segments

curveRings.Add (rLs0121Ls2112Ls1201);

ICurve Polygon curvPolyErAs1340n20Lsn2013IrLs0121Ls2112Ls1201 =
geomFactory.CreateCurvePolygon (rAs1340n20Lsn2013, curveRings);

curveRings.Clear () ;

C# Aggregate Geometries

The aggregate geometries are IMultiPoint, IMultiLineString, IMultiCurveString,
IMultiPolygon, IMultiCurvePolygon, and IMultiGeometry.

IMultiPoint

The creation of an instance uses a PointCollection object.

points.Add (pt00) ;
points.Add (ptll);
IMultiPoint pt00ptll = geomFactory.CreateMultiPoint (points);

points.Clear () ;

IMultiLineString

The creation of an instance uses a LineStringCollection object.

lines.Add (1ine0121);

lines.Add (1ine0222);

IMultilineString 1ine01211ine0222 = geomFactory.CreateMultiLineS
tring(lines);

lines.Clear () ;

IMultiCurveString

The creation of an instance uses a CurveStringCollection object.

202 | Chapter 13 FDO Cookbook

curves.Add (csAs012122) ;

curves.Add (csAs022223Ls233033) ;

IMultiCurveString aMultiCurvePolygon = geomFactory.CreateMultiCur
veString (curves) ;

curves.Clear () ;

IMultiPolygon

The creation of an instance uses a PolygonCollection object.

linearPolygons.Add (polygonNuml) ;

linearPolygons.Add (polygonNum?2) ;

IMultiPolygon aMultiPolygon = geomFactory.CreateMultiPolygon (lin
earPolygons) ;

linearPolygons.Clear () ;

IMultiCurvePolygon

The creation of an instance uses a CurvePolygonCollection object.

curvePolygons.Add (curvePolygonNuml) ;

curvePolygons.Add (curvePolygonNum2) ;

IMultiCurvePolygon aMultiCurvePolygon = geomFactory.CreateMultiC
urvePolygon (curvePolygons) ;

curvePolygons.Clear () ;

IMultiGeometry

The creation of an instance uses a GeometryCollection object.

geometries.Add (aPoint) ;
geometries.Add (aMultiPoint) ;
geometries.Add (alineString) ;

geometries.Add (aMultilLineString);

(

(

(

(
geometries.Add (aCurveString);
geometries.Add (aMultiCurveString) ;
geometries.Add (aPolygon) ;
geometries.Add (aMultiPolygon) ;
geometries.Add (aCurvePolygon) ;
geometries.Add (aMultiCurvePolygon) ;
IMultiGeometry aMultiGeometry = geomFactory.CreateMultiGeometry (geo
metries) ;

geometries.Clear () ;

Construction | 203

C# Geometries from Text Specifications

You can use the geometry factory’s CreateGeometry method to create
geometries from text specifications. Here’s an IPoint example.

IPoint ptll = geomFactory.CreatePoint (posll);

IPoint aSecondPtll = geomFactory.CreateGeometry (ptll.Text) as
IPoint;

aThirdPtll = geomFactory.CreateGeometry ("POINT (1 1)") as IPoint;

Deconstruction

Deconstruction means getting information such as dimensionality, envelope,
text specification, geometry, geometry subcomponents, and positions
(coordinates). The following table specifies the information available from
the classes.

Position means coordinate values. Dimensionality values are XY, XYZ, XYM,
or XYZM. Envelope means bounding rectangle. The envelope for an aggregate
geometry contains all of the included geometries. Text means FGF well-known
text specification. IsClosed is a boolean specifying whether or not the start
and end coordinates are identical.

Class

Information available

IDirectPosition

position, dimensionality

IPoint position, dimensionality, envelope, text
IMultiPoint dimensionality, envelope, text, IPoint
ILineString position, dimensionality, envelope, text
IMultiLineString dimensionality, envelope, text, ILineStrin

ILineStringSegment IsClosed, position, dimensionality, envelope

ICircularArcSegment IsClosed, position, dimensionality, envelope

204 | Chapter 13 FDO Cookbook

Class Information available

ICurveString position, dimensionality, envelope, text, ICircularArcSegment, ILineStringSegment
IMultiCurveString dimensionality, envelope, text, ICurveString

ILinearRing position, dimensionality, envelope

IPolygon dimensionality, envelope, text, ILinearRing

IMultiPolygon dimensionality, envelope, text, IPolygon

IRing position, dimensionality, ICircularArcSegment, ILineStringSegment
ICurvePolygon dimensionality, envelope, text, IRing

IMultiCurvePolygon dimensionality, envelope, text, ICurvePolygon

IMultiGeometry dimensionality, envelope, text, IPoint, IMultiPoint, ILineString, IMultiLineString,
ICurveString, IMultiCurveString, IPolygon, IMultiPolygon, ICurvePolygon, IMulti-
CurvePolygon
Coordinates

// IDirectPosition aPosition
double X = aPosition.X;
double Y
double Z;
double M;
int dim = aPosition.Dimensionality;
if ((dim & 1) == 1)

7 = aPosition.Z;

if ((dim & 2) == 2)

M = aPosition.M;

= aPosition.Y;

Deconstruction | 205

IDirectPosition (IPoint, ILineString, ICircularArcSegment,
ILineStringSegment, ILinearRing)

// IPoint aPoint

IDirectPosition position = aPoint.Position;

// ILineString line
IDirectPosition aPosition = null;

IDirectPosition startPosition = line.StartPosition;
IDirectPosition endPosition = line.EndPosition;
for (int i = 0; i < line.Count; i++)

aPosition = line.get Item(i);

// ICircularArcSegment arcSegment
IDirectPosition startPosition = arcSegment.StartPosition;
IDirectPosition midPoint = arcSegment.MidPoint;

IDirectPosition endPosition = arcSegment.EndPosition;

// ILineStringSegment lineSegment

IDirectPosition startPosition = lineSegment.StartPosition;
IDirectPosition endPosition = lineSegment.EndPosition;
DirectPositionCollection positions = lineSegment.Positions;

foreach (IDirectPosition position in positions)

// ICurveString curve
IDirectPosition startPosition = curve.StartPosition;

IDirectPosition endPosition = curve.EndPosition;

// ILinearRing linearRing
IDirectPosition position = null;
for (int i = 0; i < ring.Count; i++)

position = ring.get Item(i);

// ILinearRing ring
IDirectPosition position = null;
for (int 1 = 0; i < ring.Count; i++)

position = ring.get Item(i);

Dimensionality, Envelope, and Text
int dimensionality = aPoint.Dimensionality;

IEnvelope envelope = aPoint.Envelope;

string text = aPoint.Text;

206 | Chapter 13 FDO Cookbook

IsClosed (ICircularArcSegment and ILineStringSegment)

// ICircularArcSegment arcSegment

bool isClosed = arcSegment.IsClosed;

// ILineStringSegment lineSegment
bool isClosed = lineSegment.IsClosed;

IPoint and IMultiPoint

// IMultiPoint aMultiPoint

IPoint aPoint = null;

for (int 1 = 0; 1 < aMultiPoint.Count; i++)
aPoint = aMultiPoint.get Item(i);

ILineString and IMultiLineString

// IMultiLineString aMultilLineString
ILineString line = null;

for (int 1 = 0; i < aMultilineString.Count; i++)
line = aMultilLineString.get Item(i);

ICurveString and IMultiCurveString

// IMultiCurveString aMultiCurveString
ICurveString curve = null;
for (int 1 = 0; i < aMultiCurveString.Count; i++)

curve = aMultiCurveString.get Item(i);

Deconstruction | 207

ICircularArcSegment and ILineStringSegment (ICurveString and

IRing)
// ICurveString aCurveString
ICurveSegmentAbstract curveSegment = null;
ICircularArcSegment arcSegment = null;
ILineStringSegment lineSegment = null;
for (int 1 = 0; i < aCurveString.Count; i++)
{
curveSegment = aCurveString.get Item(i);
if (curveSegment.DerivedType == GeometryComponentType.Geometry

ComponentType CircularArcSegment)

arcSegment = curveSegment as ICircularArcSegment;

else if (curveSegment.DerivedType == GeometryComponentType.Geo
metryComponentType LineStringSegment)

lineSegment = curveSegment as ILineStringSegment;

// IRing ring
ICurveSegmentAbstract curveSegment = null;
ICircularArcSegment arcSegment = null;
ILineStringSegment lineSegment = null;
for (int 1 = 0; i < ring.Count; i++)
{
curveSegment = ring.get Item(i);
if (curveSegment.DerivedType == GeometryComponentType.Geometry
ComponentType CircularArcSegment)
arcSegment = curveSegment as ICircularArcSegment;
else if (curveSegment.DerivedType == GeometryComponentType.Geo
metryComponentType LineStringSegment)

lineSegment = curveSegment as ILineStringSegment;

ILinearRing (IPolygon)

// IPolygon aPolygon

ILinearRing anExteriorRing = aPolygon.ExteriorRing;
ILinearRing anInteriorRing = null;

for (int 1 = 0; 1 < aPolygon.InteriorRingCount; i++)

anInteriorRing = aPolygon.GetInteriorRing (i) ;

208 | Chapter 13 FDO Cookbook

IPolygon and IMultiPolygon

// IMultiPolygon aMultiPolygon

IPolygon aPolygon = null;

for (int 1 = 0; i < aMultiPolygon.Count; i++)
aPolygon = aMultiPolygon.get Item(i);

IRing (ICurvePolygon)

// ICurvePolygon aCurvePolygon

IRing anExteriorRing = aCurvePolygon.ExteriorRing;
IRing anInteriorRing = null;

for (int i = 0; 1 < count; i++)

anInteriorRing = aCurvePolygon.get InteriorRing(i);

ICurvePolygon and IMultiCurvePolygon

// IMultiCurvePolygon aMultiCurvePolygon
ICurvePolygon aCurvePolygon = null;

for (int i = 0; i < aMultiCurvePolygon.Count; i++)
aCurvePolygon = aMultiCurvePolygon.get Item(i);

Deconstruction | 209

IMultiGeometry

// IMultiGeometry aMultiGeometry
IGeometry geom = null;
GeometryType geomType;
IPoint pt = null;
IMultiPoint mpt = null;
ILineString line = null;
IMultilineString mline = null;
ICurveString curve = null;
IMultiCurveString mcurve = null;
IPolygon poly = null;
IMultiPolygon mpoly = null;
ICurvePolygon curvPoly = null;
IMultiCurvePolygon mCurvPoly = null;
for (int 1 = 0; i < aMultiGeometry.Count; i++)
{

geom = aMultiGeometry.get Item(i);
geomType = geom.DerivedType;

switch (geomType)

{

case GeometryType.GeometryType Point: pt = geom as IPoint; break;

case GeometryType.GeometryType MultiPoint: mpt = geom as IMulti

Point; break;
case GeometryType.GeometryType LineString: line =

eString; break;

geom as ILin

case GeometryType.GeometryType MultilLineString: mline

IMultilLineString; break;
case GeometryType.GeometryType CurveString: curve

ICurveString; break;

case GeometryType.GeometryType MultiCurveString: mcurve

as IMultiCurveString; break;

case GeometryType.GeometryType Polygon: poly = geom as IPolygon;

break;
case GeometryType.GeometryType MultiPolygon: mpoly
IMultiPolygon; break;

case GeometryType.GeometryType CurvePolygon: curvPoly

ICurvePolygon; break;

case GeometryType.GeometryType MultiCurvePolygon: mCurvPoly

geom as IMultiCurvePolygon; break;
default: break;
}
}

210 | Chapter 13 FDO Cookbook

OSGeo FDO Provider for
ArcSDE

This appendix discusses FDO API development issues that are related to OSGeo FDO Provider
for ArcSDE.

What Is FDO Provider for ArcSDE?

The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. A provider is a specific implementation of the
FDO API that provides access to data in a particular data store. ESRI® ArcSDE®
(Spatial Database Engine) is part of the ArcGIS 9 system. ArcSDE manages the
exchange of information between an (ArcGIS 9 Desktop) application and a
relational database management system. FDO Provider for ArcSDE provides FDO
with access to an ArcSDE 9-based data store, which, in this case, must be Oracle
9i (9.2.0.6).

FDO Provider for ArcSDE Software
Requirements

Installed Components

FDO Provider for ArcSDE dynamically linked libraries are installed with the FDO
SDK. They are located in <FDO SDK Install Location>\FDO\bin. You do not
have to do anything to make these DLLs visible.

211

External Dependencies

The operation of FDO Provider for ArcSDE is dependent on the presence of
ArcSDE 9 and a supported data source, such as Oracle 9i, in the network
environment. The host machine running FDO Provider for ArcSDE must also
have the required DLLs present, which are available by installing either an
ArcGIS 9.1 Desktop application or the ArcSDE SDK. For example, the required
DLLs are present if either ArcView®, ArcEditor®, or ArcInfo® are installed. For
more information about ArcGIS 9.1 Desktop applications and the ArcSDE SDK,
refer to the ESRI documentation.

Specifically, in order for FDO Provider for ArcSDE to run, three dynamically
linked libraries, sde91.dll, sg91.dll, and pe91.dll, are required and you must
ensure that the PATH environment variable references the local folder
containing these DLLs. For example, in Microsoft Windows, if ArcGIS 9.1
Desktop is installed to C:\Program Files\ArcGIS, then the required ArcSDE
binaries are located at C:\Program Files\ArcGIS\ArcSDE\bin. Similarly, if the
ArcSDE SDK is installed to the default location, then the required ArcSDE
binaries are located at C:\ArcGis\ArcSDE\bin. The absence of this
configuration may cause the following exception message "The ArcSDE runtime
was not found.".

FDO Provider for ArcSDE Limitations

The FDO Provider for ArcSDE is based on a subset of the ArcSDE API. This
subset does not include the following:

B Raster functionality
B Native ArcSDE metadata

B The annotation data, with the exception of the ANNO_TEXT column

ArcSDE Limitations

FDO Provider for ArcSDE must abide by limitations of the ArcSDE technology
to which it connects. This section discusses these limitations.

212 | Appendix A OSGeo FDO Provider for ArcSDE

Relative to ArcObjects APl and ArcGIS Server API

The ArcSDE API does not support the following advanced functionality found
in the ArcObjects API and the newer ArcGIS Server API:

Advanced geometries, such as Bezier curves and ellipses

Relationships

Networks

|

|

m Topology
|

B Analysis
|

Linear referencing

Curved Segments

If ArcSDE encounters curved segments, it will automatically tessellate them.
This means that if you create a geometry containing an arc segment in an
ArcSDE table using ArcObjects API and then you try to read that geometry
back using the ArcSDE API, you will get a series of line segments that
approximate the original arc segment. That is, you get an approximation of
the original geometry.

Locking and Versioning

ArcSDE permits row locks or table versioning provided that the ID column,
which uniquely identifies the row, is maintained by ArcSDE. If there is no ID
column or the ID column is maintained by the user, ArcSDE does not permit
row locking or table versioning to be enabled.

NOTE In ArcSDE you can either lock rows in a table or version a table, but you
cannot do both at the same time. To do either, you must alter the table’s
registration.

The following sections illustrate these three steps:

1 The creation of a table.

Relative to ArcObjects APl and ArcGIS Server APl | 213

2 The alteration of the table registration to identify one of the column
definitions as the row ID column and to enable row locking.

3 The alteration of the table registration to disable row locking and to
enable versioning.

Table Creation

The command is:

sdetable -o create -t hassdemaintainedrowid -d "name string(20),

fid integer (9) -u t_user -p test

The output of the describe registration command (sdetable -o describe_reg)
for this table is as follows:

NOTE The Row Lock has no value and the value of Dependent Objects is None.

Table Owner : T_USER
Table Name : HASSDEMAINTAINEDROWID
Registration Id : 18111

Row ID Column
Row ID Column Type
Row Lock

Minimum Row ID

Dependent Objects : None

Registration Date : 02/24/05 13:08:02

Config. Keyword : DEFAULTS

User Privileges : SELECT, UPDATE, INSERT, DELETE
Visibility : Visible

Identity Row ID Column and Enable Row Locking

The command is:

sdetable -o alter reg -t hassdemaintainedrowid -c fid -C sde -L

on -u t user -p test

The output of the describe registration command (sdetable -o describe_reg)
for this table is as follows.

214 | Appendix A OSGeo FDO Provider for ArcSDE

NOTE The Row ID Column value is FID, the Row ID Column Type value is SDE
Maintained, and the Row Lock value is Enable.

Table Owner

Table Name
Registration Id
Row ID Column

Row ID Column Type
Row ID Allocation
Row Lock

Minimum Row ID
Dependent Objects
Registration Date
Config. Keyword
User Privileges
Visibility

T USER
HASSDEMAINTAINEDROWID
18111

FID

SDE Maintained

Many

Enable

1

None

02/24/05 13:08:02
DEFAULTS

SELECT, UPDATE, INSERT, DELETE
Visible

Disable Row Locking and Enable Versioning

The command is:

sdetable -o alter reg -t hassdemaintainedrowid -L off -V MULTI -u

t _user -p test

The output of the describe registration command (sdetable -o describe_reg)

for this table is as follows:

NOTE The “Row Lock” is “Not Enable” and “Dependent Objects” is “Multiversion

Table”.

Locking and Versioning | 215

Table Owner : T_USER

Table Name : HASSDEMAINTAINEDROWID
Registration Id : 18111

Row ID Column : FID

Row ID Column Type : SDE Maintained

Row ID Allocation : Many

Row Lock : Not Enable

Minimum Row ID HE

Dependent Objects : Multiversion Table
Dependent Object Names : A18111, D18111
Registration Date : 02/24/05 13:08:02
Config. Keyword : DEFAULTS

User Privileges : SELECT, UPDATE, INSERT, DELETE
Visibility : Visible

FDO Provider for ArcSDE Connection

This information supplements the Establishing a Connection chapter. You
connect to an ArcSDE data store indirectly through the ArcSDE server. The
underlying data source for the data store is a database, such as Oracle. The
ArcSDE server is connected to the data source and mediates the requests that
you send it.

You can connect to FDO Provider for ArcSDE in one step if you already know
the name of the data store that you want to use. Otherwise, you must connect
in two steps.

The minimum required connection properties for the initial call to Open()
are server, instance, username, and password. Multiple users can access the
data store. However, access is password-protected. The server property is the
name of the machine hosting the ArcSDE server. The instance property acts
as an index into an entry in the services file. An entry contains port and
protocol information used to connect to the ArcSDE server. On a Windows
machine, the services file is located in C:\WINDOWS\system32\drivers\etc.
Assuming that the instance name is “esri_sde”, an entry would look something
like this: “esri_sde 5151/tcp #ArcSDE Server Listening Port”.

An ArcSDE data source may contain more than one data store. For the first
call to Open(), a data store name is optional. If successful, the first call to
Open() results in the data store parameter becoming a required parameter and
a list of the names of the data stores in the data source becoming available.
You must choose a data store and call Open() again.

216 | Appendix A OSGeo FDO Provider for ArcSDE

If the data source supports multiple data stores, the list returned by the first
call to Open() will contain a list of all of the data stores resident in the data
source. Otherwise, the list will contain one entry: “Default Data Store”.

If you know the name of the data store, you can provide it for the first call to
Open() and make the connection in one step.

Data Type Mappings

This section shows the mappings from FDO data types to ArcSDE data types
to Oracle data types:

FDO DataType

sdetable Column Definition

Oracle Column Type

FdoDataType_Boolean Not supported Not supported
FdoDataType_Byte Not supported Not supported
FdoDataType_DateTime date DATE

FdoDataType_Decimal Not supported Not supported

FdoDataType_Double

double(38,8)

NUMBER(38,8)

FdoDataType_Int16 integer(4) NUMBER(4)
FdoDataType_Int32 integer(10) NUMBER(10)
FdoDataType_Int64 Not supported Not supported

FdoDataType_Single

float(6,2) // typical
float(0<n<=6, o<m<DBMSLimit)) // possible

NUMBER(6,2)
NUMBER(n,8)

FdoDataType_String string(<length>) VARCHAR2(<length>)
FdoDataType_BLOB blob LONG RAW
FdoDataType_CLOB Not supported Not supported

Data Type Mappings | 217

FDO DataType sdetable Column Definition Oracle Column Type

FdoDatatype_UniquelD Not supported Not supported

Creating a Feature Schema

This section describes the creation of the SampleFeatureSchema, which is the
example feature schema described in the Schema Management chapter. It also
describes the creation of the OGC980461FS schema, which is the schema
defined in the OpenGIS project document 98-046r1.

FDO Provider for ArcSDE does not support the creation or destruction of
feature schema (that is, does not support the FdoIApplySchema and
FdoIDestroySchema commands.) However, it does support the
FdoIDescribeSchema command. The intended use of FDO Provider for ArcSDE
is to operate on already existing feature schemas. FDO Provider for ArcSDE
supports inserting, selecting, updating, and deleting data in existing schemas.

You can use FDO Provider for ArcSDE to operate on a new feature schema.
However, you must create the schema using ArcSDE tools. In particular you
use the sdetable and sdelayer commands, which can be used to create a schema
in any of the data store technologies used by ArcSDE. This part of the
description is generic. Other parts of the description are specific to Oracle and
to Windows XP because Oracle is the data store technology and Windows XP
is the operating system for this exercise.

First, you must create an Oracle username for the feature schema (that is, the
name of the Oracle user is the name of the feature schema.) To do this, you
connect as system administrator to the Oracle instance used by the ArcSDE
server. The following command creates the user and grants to that user the
privileges necessary for the ArcSDE tool commands to succeed:

grant connect,resource to <schemaName> identified by <password>

Secondly, you must log in to the host where the ArcSDE server is running.
ArcSDE tools are on the host machine where the ArcSDE server resides.

TIP NetMeeting can be used to remotely login to where the ArcSDE Server is
running and launch a command window (that is, in the Run dialog box, enter
cmd) The ArcSDE tool commands can be executed through the command window.
Do not use C:\WINDOWS\SYSTEM32\COMMAND.COM because the line buffer
is too short to contain the entire text of some of the SDE tool command strings.

218 | Appendix A OSGeo FDO Provider for ArcSDE

Finally, execute the sdetable and sdelayer commands in a command window
to create each of the classes. Since you are executing these commands on the
host where the ArcSDE server is located, you can omit the server name option.
If the ArcSDE server is connected to only one data store, you can omit the
service option. For more information about all of the ArcSDE commands,
consult the ArcSDE Developer Help Guide.

SampleFeatureSchema

In this sample a feature schema called SampleFeatureSchema is created, which
contains one feature class called SampleFeatureClass. This feature class has
the following three properties:

B An Int32 called SampleldentityDataProperty.
B A string called SampleNameDataProperty.

B A polygon geometry called SampleGeometricProperty.

First, use the sdetable -o create command to add the integer and string
properties to SampleFeatureClass. Then, use the sdetable -0 alter_reg command
to identify the SampleldentityDataProperty as an identity property. Finally,
use the sdelayer -o add command to add the geometric property to
SampleFeatureClass. This assumes that only one ArcSDE server service is
running so that the -i option is optional. The -i option takes a service name
as an argument.

The sdetable -o create command can be invoked as follows:

sdetable -o create -t SampleFeatureClass -d “SamplelIdentityData
Property INTEGER(10), SampleNameDataProperty STRING (64)” -u

SampleFeatureSchema -p test.

The -o option takes the command option name. The -d option takes the
column definitions, which is a quoted list of column name/column type pairs
delimited by commas. The -u option takes an Oracle database user name,
which becomes the feature schema name. The -p option takes a password.

The sdetable -o alter_reg command is invoked as follows:

sdetable -o alter reg -t SampleFeatureClass -c SamplelIdentityData
Property -C USER -u SampleFeatureSchema -p test

The -c option identifies the column name that will be the identity property.
The -C option indicates whether SDE is supposed to generate the value or
obtain it from the user. You will be prompted to confirm that you want to
alter the registration of the table.

Creating a Feature Schema | 219

The sdelayer command is invoked as follows:

sdelayer -o add -1 SampleFeatureClass,SampleGeometricProperty -E
0,0,100,50 -e a -u SampleFeatureSchema -p test

The -o option takes the command option name. The -1 option identifies the
table and column. The -E option identifies the extents; the arguments are
<xmin,ymin,xmax,ymax>. The -e option identifies the geometry type with
‘a’ indicating an area shape.

OGC980461FS

This schema contains the ten classes defined in the OpenGIS Project Document
980946r1. The types of the properties belonging to the classes is similar to
that of SampleFeatureClass, namely, an integer, a string, and a geometry. One
difference is that the geometry in three of the classes is multipart. Two of
them have MULTIPOLYGON geometries, and one of them has a
MULTILINESTRING geometry. A multipart geometry is indicated by adding
a ‘+’ to the entity argument to the -e option in the sdelayer command. A
MULTIPOLYGON geometry is indicated by “-e a+”, and a MULTILINESTRING
geometry is indicated by “-e 1+”.

An ArcSDE table cannot have two geometries. This restriction impacts the
definition of the buildings class, which has a POLYGON and a POINT
geometry. We have chosen to add the POINT geometry. The OpenGIS 98-046r1
document defines one query that references building objects, and the POINT
geometry supports this query.

NOTE The use of -E option in the sdelayer command defines the extents. The
arguments are <xmin,ymin,xmax,ymax>. The values provided below ensure that
you will not receive any “ordinate out of bounds” errors when inserting the
98046r1 data.

220 | Appendix A OSGeo FDO Provider for ArcSDE

ArcSDE Commands That Define the OGC98046 | FS Classes

Creating a Feature Schema | 221

sdetable -o

create -t lakes -d "fid integer (10), name string(64)"

-u OGC980461FS -p test

sdetable -o
test
sdelayer -o
-p test
sdetable -o
string (64),
OGC980461FS
sdetable -o
OGC980461FS
sdelayer -o

alter reg -t lakes -c fid -C user -u OGC980461FS -p

add -1 lakes,shore -E 0,0,100,50 -e a -u OGC980461FS

create -t road segments -d "fid integer (10), name
aliases string(64), num lanes integer (10)" -u
-p test

alter reg -t road segments -c fid -C user -u
-p test
add -1 road segments,centerline -E 0,0,100,50 -e 1 -u

OGC980461FS -p test

sdetable -o
string (64),
sdetable -o
OGC980461FS

sdelayer -o

create -t divided routes -d "fid integer (10), name
num lanes integer (10)" -u OGC980461FS -p test

alter reg -t divided routes -c fid -C user -u

-p test

add -1 divided routes,centerlines -E 0,0,100,50 -e 1+

-u OGC980461FS -p test
sdetable -o create -t forests -d "fid integer (10), name string(64)"
-u OGC980461FS -p test

sdetable -o
test
sdelayer -o

OGC980461FS

alter_reg -t forests -c fid -C user -u OGC980461FS -p

add -1 forests,boundary -E 0,0,100,50 -e a+ -u
-p test

sdetable -o create -t bridges -d "fid integer (10), name string(64)"
-u OGC980461FS -p test

sdetable -o
test
sdelayer -o

OGC980461FS

alter reg -t bridges -c fid -C user -u 0OGC980461FS -p

add -1 bridges,position -E 0,0,100,50 -e p -u
-p test

sdetable -o create -t streams -d "fid integer (10), name string(64)"
-u OGC980461FS -p test

sdetable -o
test

sdelayer -o
OGC980461FS
sdetable -o
string (64)"
sdetable -o
-p test

sdelayer -o
OGC980461FS

222 | Appendix A OSGeo

alter_reg -t streams -c fid -C user -u OGC980461FS -p

add -1 streams,centerline -E 0,0,100,50 -e 1 -u
-p test
create -t buildings -d "fid integer (10), address

-u OGC980461FS -p test
alter reg -t buildings -c fid -C user -u OGC980461FS

add -1 buildings,position -E 0,0,100,50 -e p -u
-p test

FDO Provider for ArcSDE

sdetable -o

type string(64)"

sdetable -o
test

sdelayer -o

create -t ponds -d "fid integer(10),
-u OGC980461FS -p test
alter reg -t ponds -c fid -C user -u OGC980461FS -p

name string(64),

add -1 ponds, shores -E 0,0,100,50 -e a+ -u OGC980461FS

-p test
sdetable -o create -t named places -d "fid integer(10), name
string (64)" -u OGC980461FS -p test
sdetable -o alter reg -t named places -c fid -C user -u OGC980461FS
-p test
sdelayer -o add -1 named places,boundary -E 0,0,100,50 -e a -u
OGC980461FS -p test
sdetable -o create -t map neatlines -d "fid integer (10)" -u
OGC980461FS -p test
sdetable -o alter reg -t map neatlines -c fid -C user -u
OGC980461FS -p test
sdelayer -o add -1 map_neatlines,neatline -E 0,0,100,50 -e a -u

OGCY980461FS -p test

Logical to Physical Schema Mapping

This mapping does not apply because the ArcSDE provider does not support
the ApplySchema command.

Physical to Logical Schema Mapping

When FDO describes the schema of an existing table that was not created by
the ApplySchema command, it maps native data types to FDO data types. The
ArcSDE provider talks to the ArcSDE server. The server uses either Oracle or
Sql Server as the back-end data store technology. So two schema mappins are
described here.

Oracle 10gR2 Back-End

The schema name is the name of the user supplied as the value of the
Username connection parameter. The class name is the name of the table
created using the sdetable command. The property names are the column
names.

Logical to Physical Schema Mapping | 223

The following ArcSDE commands were used to create a table. The sdetable
creates a business table. The sdelayer command converts the business table
into a feature class table.

NOTE The sdetable -i option designates the ArcSDE server instance against which
to apply the command. The value can be a symbolic name or a port number. If
the value is a symbolic name, the symbolic name must be mapped to a tcp port
number in the C:\WINDOWS\system32\drivers\etc\services file.

NOTE The sdelayer -e argument “np” means that the geometry is either a 2D
point or NULL. The -l argument “existingtable,featgeom means a geometry column
called featgeom in a table called existingtable. The -E argument “empty” means
that the layer envelope is empty. The -P argument “32” means that the geometry
is stored with 32-bit precision. The -t argument “S” means that the storage type
used for the geometry is Oracle Spatial. The -G argument “26910” is the SRID of
a coordinate system in the pedef.h file as well as in the Oracle mdsys.cs_srs table.
You can access this file by googling “pedef.h”. It contains the following line:
#define PE_PCS_NAD 1983 UTM 10N 26910 /* NAD 1983 UTM Zone 10N */.
The sqlplus command select cs_name from mdsys.cs_srs where srid =
26910; returns NAD83 / UTM zone T10N.

sdetable -o create -t existingtable -d “smInt4Col smallint (4),
intl6Col intl6, int32Col int32, float32Col float32, florat64Col
float64, intl0 integer(10), float4 4 float(4,4), double7 2
double (7,2), string64 string(64), blobCol blob, clobCol clob, id
uuid, nStringCol nstring, nClobCol nclob, dateCol date” -u existin
guser -p test -i esri sde

sdelayer -o add -1 existingtable, featgeom -e np -E empty -i

esri sde -u existinguser -p test -G 26910 -P 32 -t S

The following table maps the output of the sdetable -o describe command
to the output of the sqlplus desc command to the output of the FDO
DescribeSchema command.

Column ArcSDE Type, Length, Oracle Type FDO Type
decimal places

SMINT4COL SE_INT16, 4 NUMBER(4) Int16

ID SE_UUID, 38 CHAR(38) Unmapped

INT16COL SE_INT16, 4 NUMBER(4) Int16

224 | Appendix A OSGeo FDO Provider for ArcSDE

Column ArcSDE Type, Length, Oracle Type FDO Type
decimal places
INT32COL SE_INT32, 10 NUMBER(38) Int32
FLOAT32COL SE_FLOAT32, 6, 2 NUMBER(6,2) Single
FLOAT64COL SE_FLOAT64, 7, 2 NUMBER(15,4) Double
INT10 SEINT32, 10 NUMBER(10) Int32
FLOAT4_4 SE_FLOAT32, 4, 4 NUMBER(4,4) Single
DOUBLE7_2 SE_FLOATé64, 7, 2 NUMBER(7,2) Double
STRING64 SE_STRING, 64 VARCHAR2(64) String
BLOBCOL SE_BLOB, 0 BLOB BLOB
CLOBCOL SE_CLOB, 0 CLOB Unmapped
NSTRINGCOL SE_NSTRING, 255 NVARCHAR2(255) String
NCLOBCOL SE_NCLOB, 0 NCLOB Unmapped
DATECOL SE_DATE, 0 DATE DateTime
FEATGEOM SE_SHAPE, 0 MDSYS.SDO_GEOMETRY Geometry
OBJECTID SE_INT32, 10 NUMBER(38) Int32

NOTE The OBJECTID column was not specified in the -d arguments of the sdetable

command.

Sql Server 2005 Back-End

The schema name is the name of the user supplied as the value of the
Username connection parameter prefixed by “SDE_". The class name is the

Physical to Logical Schema Mapping | 225

name of the table created using the sdetable command. The property names
are the column names.

The following ArcSDE commands were used to create a table. The sdetable
creates a business table. The sdelayer command converts the business table
into a feature class table.

NOTE The sdetable -i option designates the ArcSDE server instance against which
to apply the command. The value can be a symbolic name or a port number. If
the value is a symbolic name, the symbolic name must be mapped to a tcp port
number in the C:\WINDOWS\system32\drivers\etc\services file.

NOTE The sdelayer -e argument “np” means that the geometry is either a 2D
point or NULL. The -l argument “existingtable,featgeom means a geometry column
called featgeom in a table called existingtable. The -E argument “empty” means
that the layer envelope is empty. The -P argument “32” means that the geometry
is stored with 32-bit precision. The -t argument “B” means that the storage type
used for the geometry is Esri Binary. The -G argument “26910” is the SRID of a
coordinate system in the pedef.h file as well as in the Oracle mdsys.cs_srs table.
You can access this file by googling “pedef.h”. It contains the following line:
#define PE PCS NAD 1983 UTM 10N 26910 /* NAD 1983 UTM Zone 10N */.

sdetable -o create -t existingtable -d “smInt4Col smallint (4),
intl6Col intl6, int32Col int32, float32Col float32, florat64Col
float64, intl0 integer(10), float4 4 float(4,4), double7 2
double (7,2), string64 string(64), blobCol blob, clobCol clob, id
uuid, nStringCol nstring, nClobCol nclob, dateCol date” -u existin
guser -p test -i esri sde_ ss

sdelayer -o add -1 existingtable,featgeom -e np -E empty -1

esri sde ss -u existinguser -p test -G 26910 -P 32 -t B

The following table maps the output of the sdetable -o describe command
to the output of the sqlplus desc command to the output of the FDO
DescribeSchema command.

Column ArcSDE Type, Length, Sql Server Type FDO Type
decimal places

SMINT4COL SE_INT16, 4 smallint Int16

ID SE_UUID, 38 uniqueidentifier Unmapped

INT16COL SE_INT16, 4 smallint Int16

226 | Appendix A OSGeo FDO Provider for ArcSDE

Column ArcSDE Type, Length, Sql Server Type FDO Type
decimal places
INT32COL SE_INT32, 10 int Int32
FLOAT32COL SE_FLOAT32, 6, 2 real Single
FLOAT64COL SE_FLOAT64, 7, 2 float Double
INT10 SEINT32, 10 int Int32
FLOAT4_4 SE_FLOAT32, 4, 4 numeric(4,4) Single
DOUBLE7_2 SE_FLOATé64, 7, 2 numeric(7,2) Single
STRING64 SE_STRING, 64 varchar(64) String
BLOBCOL SE_BLOB, 0 image BLOB
CLOBCOL SE_CLOB, 0 text Unmapped
NSTRINGCOL SE_NSTRING, 255 nvarchar(255) String
NCLOBCOL SE_NCLOB, 0 ntext Unmapped
DATECOL SE_DATE, 0 date DateTime
FEATGEOM SE_SHAPE, 0 int Geometry

FDO Provider for ArcSDE Capabilities

The capabilities of an FDO provider are grouped in the following categories:

B Connection
B Schema

B Commands

FDO Provider for ArcSDE Capabilities | 227

Expressions
Filters

Geometry

Raster

Connection Capabilities

Use the FdoIConnectionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetConnectionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIConnectionCapabilities class description
in the FDO API Reference documentation.

The following capabilities are supported:

Per connection threading

static spatial content extent type

locking

exclusive locking type

transactions

long transactions

SQL

multiple spatial contexts

specifying coordinate systems by name or ID without specifying WKT

Write

Multi-user write

Schema Capabilities

Use the FdoISchemaCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetSchemaCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoISchemaCapabilities class description in
the FDO API Reference documentation.

228 | Appendix A OSGeo FDO Provider for ArcSDE

The following capabilities are supported:

class and feature class class types

DateTime data type with a maximum length of 12 bytes
Double data type with a maximum length of 8 bytes
Int16 data type with a maximum length of 2 bytes
Int32 data type with a maximum length of 4 bytes
Single data type with a maximum length of 4 bytes
String data type with a maximum length of 4294967296
BLOB data type with a maximum length of 4294967296
Int32 auto-generated data type

Identity properties of type DateTime, Double, Int16, Int32, Single, String,
and BLOB

Name size limitation of 123 for a schema element name of type
FdoSchemaElementNameType_Datastore

Name size limitation of 65 for a schema element name of type
FdoSchemaFElementNameType_Schema

Name size limitation of 160 for a schema element name of type
FdoSchemaElementNameType_Class

Name size limitation of 32 for a schema element name of type
FdoSchemaElementNameType_Property

Name size limitation of 64 for a schema element name of type
FdoSchemaElementNameType_Description

Characters that cannot be used for a schema element name: .:
Auto ID generation

Composite unique value constraints

Multiple schemas

Null value constraints

Unique value constraints

FDO Provider for ArcSDE Capabilities | 229

Command Capabilities

Use the FdolICommandCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetCommandCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoICommandCapabilities class description in
the FDO API Reference documentation.

The following commands are supported:
FdoCommandType_Select
FdoCommandType_SelectAggregates
FdoCommandType_Insert
FdoCommandType_Delete
FdoCommandType_Update
FdoCommandType_DescribeSchema
FdoCommandType_ActivateSpatialContext
FdoCommandType_CreateSpatialContext
FdoCommandType_DestroySpatial Context

FdoCommandType_GetSpatial Contexts

|

|

|

|

|

|

|

|

|

|

B FdoCommandType_SQLComnmand
B FdoCommandType_AcquireLock
B FdoCommandType_GetLockInfo
B FdoCommandType_GetLockedObjects

B FdoCommandType_GetLockOwners

B FdoCommandType_ReleaseLock

B FdoCommandType_ActivateLongTransaction
B FdoCommandType_DeactivateLongTransaction
B FdoCommandType_CommitLongTransaction
B FdoCommandType_CreateLongTransaction
|

FdoCommandType_GetLongTransactions

230 | Appendix A OSGeo FDO Provider for ArcSDE

B FdoCommandType_RollbackLongTransaction

B FdoCommandType_ListDataStores

The following capabilities are supported:
B command parameterization
B simple functions in Select and SelectAggregate commands

B use of Distinct in SelectAggregates command

Filter Capabilities

Use the FdolFilterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetFilterCapabilities() method on the
FdoIConnection object. For an explanation of the meaning of the capabilities,
consult the FdolFilterCapabilities class description in the FDO API Reference
documentation.

The following capabilities are supported:
m Conditions of type comparison, like, in, null, spatial, and distance
B the Beyond and Within distance operations

W spatial operations of type Contains, Crosses, Disjoint, Equals, Intersects,
Overlaps, Touches, Within, CoveredBy, Inside, and Envelopelntersects

Expression Capabilities

Use the FdolExpressionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetExpressionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIExpressionCapabilities class description in
the FDO API Reference documentation.

Basic expressions are supported.

The following functions are supported:

B Double Sum(<type> value) where <type> is one of Double, Single, Int16,
or Int32.

B Int64 Count(<type> value) where <type> is one of Boolean, Double, Single,
Decimal, Byte, DateTime, Int16, Int32, Int64, String, BLOB, CLOB,
ObjectProperty, GeometricProperty, AssociationProperty, or RasterProperty

FDO Provider for ArcSDE Capabilities | 231

B Double Avg(<type> value) where <type> is one of Double, Single, Int16,
or Int32.

B Double Max(<type> value) where <type> is one of Double, Single, Int16,
or Int32.

B Double StdDev(<type> value) where <type> is one of Double, Single, Int16,
or Int32.

Geometry Capabilities

Use the FdolGeometryCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetGeometryCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdolGeometryCapabilities class description in
the FDO API Reference documentation.

Dimensionality XYZM is supported. The geometry component types LinearRing
and LineStringSegment are supported. The following geometry types are
supported.

B Point

B LineString

m Polygon

B MultiPoint

B MultiLineString
B MultiPolygon

Raster Capabilities

Use the FdolIRasterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetRasterCapabilities() method on the
FdoIConnection object. For an explanation of the meaning of the capabilities,
consult the FdoIRasterCapabilities class description in the FDO API Reference
documentation.

No Raster capabilities are supported.

232 | Appendix A OSGeo FDO Provider for ArcSDE

OSGeo FDO Provider for
MySQL

This appendix discusses FDO API development issues that are related to OSGeo FDO Provider

for MySQL.

What Is FDO Provider for MySQL?

The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for MySQL provides FDO with
access to a MySQL-based data store.

The FDO Provider for MySQL API provides custom commands that are
specifically designed to work with the FDO API. For example, using these
commands, you can do the following:

Gather information about a provider.
Transmit client services exceptions.
Get lists of accessible data stores.
Create connection objects.

Create and execute spatial queries.

The MySQL architecture supports different storage engines. Choose an engine
as needed, depending on its characteristics and capabilities, such as the following:

MyISAM is a disk-based storage engine. It does not support transactions.

InnoDB is a disk-based storage engine. It has full ACID transaction capability.

233

B Memory (Heap) is a storage engine utilizing only RAM. It is very fast.
B NDB is the MySQL Cluster storage engine.

B MERGE is a variation of MyISAM. A MERGE table is a collection of identical
MyISAM tables, which means that all tables have the same columns,
column types, indexes, and so on.

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the OSGeo FDO Provider for MySQL API Reference Help
(MySQL_Provider_API.chm).

Logical to Physical Schema Mapping

The FDO ApplySchema command creates a table for each class in the
command’s class collection. The mapping of logical FDO data types to native
types is described here.

NOTE The definition of the FDO Decimal data type requires that the precision
property be set as a minimum to 1; in this case the scale property is set to 0 by
default. Precision is the number of digits in the number, and scale is the number
of digits to the right of the decimal point. The maximum number of digits in the
native type is 64.

NOTE The definition of the FDO String data type requires that the length property

be set.

FDO Data Type Native Data Type
Boolean tinyint(4)

Byte tinyint(3) unsigned
DateTime datetime

Decimal (precision = 20; scale = 4) decimal(20,4)
Double double

Int16 smallint(6)

234 | Appendix B OSGeo FDO Provider for MySQL

FDO Data Type Native Data Type

Int32 int(11)
Int64 bigint(20)
Single double
String (length is 64) varchar(64)

Physical to Logical Schema Mapping

When FDO describes the schema of an existing table that was not created by
the ApplySchema command, it maps native data types to FDO data types.
This mapping is described here.

The name of the schema is the concatenation of ‘Fdo’ and the name of the
database. This is the database created using the ‘CREATE DATABASE’ command
and containing the existing table(s). The table names are the class names, and
the column names are the property names.

NOTE The length of a bit field is in the range 1-64. A row in a column of type
bit(64) can hold 64 bit values.

NOTE The following native types are not mapped to FDO data types: float, float
unsigned, real unsigned, double unsigned, binary, varbinary, tinyblob, blob,
mediumblob, longblob, tinytext, mediumtext, and longtext.

Native Type Defaults FDO Data Type
bit(length =1 Boolean

bit(2) Byte

bit(64) Int64

tinyint length = 4 Int16

Physical to Logical Schema Mapping | 235

Native Type Defaults FDO Data Type
tinyint unsigned length =3 Byte

smallint length = 6 Int16

smallint unsigned length =5 Int32

mediumint length =9 Int32

mediumint unsigned length =8 Int32

int length =11 Int32

int unsigned length =10 Int64

bigint length = 20 Int64

bigint unsigned length = 20 Int64

real Double

double Double

numeric precision = 10; scale = 0 Decimal (precision = 10; scale =

0)

numeric unsigned

precision = 10; scale =0

Decimal (precision = 10; scale =
0)

date DateTime
datetime DateTime
timestamp DateTime
year Int32

236 | Appendix B OSGeo FDO Provider for MySQL

Native Type Defaults

FDO Data Type

char(64) String (length = 192)
varchar(64) String (length = 192)
enum String
set String

FDO Provider for MySQL Capabilities

The capabilities of an FDO provider are grouped in the following categories:
Connection

Schema

Commands

Expressions

Filters

Geometry

Raster

Connection Capabilities

Use the FdoIConnectionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetConnectionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIConnectionCapabilities class description
in the FDO API Reference documentation.

The following capabilities are supported:
B Per connection threading
W static spatial content extent type

B transactions

FDO Provider for MySQL Capabilities | 237

SQL
multiple spatial contexts
Write

Multi-user write

Schema Capabilities

Use the FdoISchemaCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetSchemaCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoISchemaCapabilities class description in
the FDO API Reference documentation.

The following capabilities are supported:

class and feature class class types

Boolean data type with a maximum length of 1 byte
Byte data type with a maximum length of 1 byte
DateTime data type with a maximum length of 12 bytes

Decimal data type with a maximum length of 95 digits (maximum decimal
precision of 65 and maximum decimal scale of 30)

Double data type with a maximum length of 8 bytes
Int16 data type with a maximum length of 2 bytes
Int32 data type with a maximum length of 4 bytes
Int64 data type with a maximum length of 8bytes
Single data type with a maximum length of 4 bytes
String data type with a maximum length of 2147483647
Int64 auto-generated data type

Identity properties of type Boolean, Byte, DateTime, Decimal, Double,
Int16, Int32, Int64, Single, and String

Name size limitation of 64 for a schema element name of type
FdoSchemaElementNameType_Datastore

238 | Appendix B OSGeo FDO Provider for MySQL

B Name size limitation of 200 for a schema element name of type
FdoSchemaFlementNameType_Schema

B Name size limitation of 200 for a schema element name of type
FdoSchemaElementNameType_Class

B Name size limitation of 255 for a schema element name of type
FdoSchemaFlementNameType_Property

B Name size limitation of 255 for a schema element name of type
FdoSchemaElementNameType_Description

Characters that cannot be used for a schema element name: .:
Association properties

Auto ID generation

Composite ID

Composite unique value constraints
Datastore scope unique ID generation
Default value

Exclusive value range constraints
Inclusive value range constraints
Inheritance

Multiple schemas

Null value constraints

Object properties

Unique value constraints

Schema modification

Schema overrides

Unique value constraints

Command Capabilities

Use the FdolICommandCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetCommandCapabilities()

FDO Provider for MySQL Capabilities | 239

method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoICommandCapabilities class description in
the FDO API Reference documentation.

The following commands are supported:
FdoCommandType_Select
FdoCommandType_SelectAggregates
FdoCommandType_Insert
FdoCommandType_Delete
FdoCommandType_Update
FdoCommandType_DescribeSchema
FdoCommandType_ApplySchema
FdoCommandType_DestroySchema

FdoCommandType_CreateSpatialContext

|

|

|

|

|

|

|

|

|

B FdoCommandType_DestroySpatialContext
B FdoCommandType_GetSpatialContexts

B FdoCommandType_CreateDataStore

B FdoCommandType_DestroyDataStore

B FdoCommandType_ListDataStores

B FdoCommandType_DescribeSchemaMapping

B FdoCommandType_SQLComnmand

B FdoRdbmsCommandType_CreateSpatiallndex
B FdoRdbmsCommandType_DestroySpatiallndex
|

FdoRdbmsCommandType_GetSpatiallndexes

The following capabilities are supported:
B simple functions in Select and SelectAggregate commands
B use of expressions for properties in Select and SelectAggregates commands

B use of Distinct in SelectAggregates command

240 | Appendix B OSGeo FDO Provider for MySQL

B availability of ordering in Select and SelectAggregates command

B availability of grouping criteria in SelectAggregates command

Filter Capabilities

Use the FdolFilterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetFilterCapabilities() method on the
FdoIConnection object. For an explanation of the meaning of the capabilities,
consult the FdolFilterCapabilities class description in the FDO API Reference
documentation.

The following capabilities are supported:
B Conditions of type comparison, like, in, null, spatial, and distance

W spatial operations of type Intersects and Envelopelntersects

Expression Capabilities

Use the FdolExpressionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetExpressionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIExpressionCapabilities class description in
the FDO API Reference documentation.

Basic, function, and parameter expressions are supported.

The following functions are supported:

B Double Avg(<type> value) where <type> is one of Decimal, Double, Single,
Int16, Int32, or Int64.

B Decimal Ceil(<type> value) where <type> is one of Decimal or Double.
B String Concat(String str1Val, String str2Val)

B Int64 Count(<type> value) where <type> is one of Boolean, Byte, DateTime,
Decimal, Double, Int16, Int32, Int64, Single or String

B Decimal Floor(<type> value) where <type> is one of Decimal, Double, or
Single

B String Lower(String value)

B Double Max(<type> value) where <type> is one of Byte, DateTime, Decimal,
Double, Single, Int16, Int32, Int64, Single, or String.

FDO Provider for MySQL Capabilities | 241

B Byte Min(<type> value) where <type> is one of Byte, DateTime, Decimal,
Double, Single, Int16, Int32, Int64, Single, or String.

B Double Sum(<type> value) where <type> is one of Decimal, Double, Int16,
Int32, Int64, or Single.

W String Upper(String value)

Geometry Capabilities

Use the FdolGeometryCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetGeometryCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdolGeometryCapabilities class description in
the FDO API Reference documentation.

Dimensionality XY is supported. The geometry component type LinearRing
is supported. The following geometry types are supported.

Point
LineString
Polygon

|

|

|

B MultiPoint
B MultiLineString
|

MultiPolygon

Raster Capabilities

Use the FdoIRasterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetRasterCapabilities() method on the
FdolConnection object. For an explanation of the meaning of the capabilities,
consult the FdoIRasterCapabilities class description in the FDO API Reference
documentation.

No Raster capabilities are supported.

242 | Appendix B OSGeo FDO Provider for MySQL

OSGeo FDO Provider for
ODBC

This appendix discusses FDO API development issues that are related to OSGeo FDO Provider
for ODBC.

What Is FDO Provider for ODBC?

The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for ODBC provides FDO with
access to an ODBC-based data store.

The FDO Provider for ODBC can access simple X, y, z feature objects that can
run in a multi-platform environment, including Windows, Linux, and UNIX.

The FDO Provider for ODBC has the following characteristics:

B The FDO Provider for ODBC supports the definition of one or more feature
classes in terms of any relational database table that contains an X, Y, and
optionally, Z columns.

B Metadata, which maps the table name, and X, Y, and optionally, Z columns
to a feature class, is maintained outside the database in a configuration file.
This information, in conjunction with the table structure in the database,
provides the definition of the feature class.

B The x, y, and z locations of objects are stored in separate properties in the
primary object definition of a feature, but are accessible through a single
class property ‘Geometry’.

243

B Read-only access is provided to pre-existing data defined and populated
through 3rd party applications (that is, FDO Provider for ODBC will not
be responsible for defining the physical schema of the data store nor for
populating the object data).

B The schema configuration of the data store is provided to the FDO Provider
for ODBC through an optional XML file containing the Geographic Markup
Language (GML) definition of the schema that maps ‘tables’ and ‘columns’
in the data store to feature classes and property mappings in the FDO data
model.

NOTE Microsoft Excel (must have at least one named range; do not use DATABASE
or other reserved words as a range name).

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the OSGeo FDO Provider for ODBC API Reference Help (ODBC_Provider_API.chm).

Physical to Logical Schema Mappings

Mappings of data in three data sources, a Microsoft Access database (an .accdb
file), an Excel spreadsheet (.xIsx file), and a text file, to FDO data types are
shown.

Microsoft Access

Use the ODBC provider to connect to a Microsoft Access database.

The schema name is “Fdo”. There is only one database per file so there can
be only one schema. The table names are used for class names. Column names
are used for property names.

Some native types are not mapped to FDO data types and so do not appear
in the output of the describe schema command even if they exist in the table.
They are AutoNumber/Replication ID, Number/Replication ID, and OLE object.
The mapping of the rest of the native data types is in the following table.

244 | Appendix C OSGeo FDO Provider for ODBC

NOTE The AutoNumber, Number, and Date/Time native types are sub-typed. If
a column named X and a column named Y, both typed Number:Double, are
present, they are mapped to an FDO geometric property whose type is Point and
whose spatial context association property is “Default”.

Native Type:SubType FDO Type

AutoNumber:Long Integer Int32

AutoNumber:ReplicationID Not

mapped.
Text String
Memo String
Number:Byte Byte
Number:Integer Int16
Number:Long Integer Int32
Number:Single Single
Number:Double Double
Number:Decimal Decimal
Number:Replication ID Not

mapped.
Date/Time:General Date DateTime
Date/Time:Long Date DateTime

Date/Time:Medium Date DateTime

Date/Time:Short Date DateTime

Physical to Logical Schema Mappings | 245

Native Type:SubType FDO Type

Date/Time:Long Time DateTime

Date/Time:Medium Time DateTime

Date/Time:Short Time DateTime
Currency Decimal
Yes/No Boolean
OLE object Not
mapped.
Hyperlink String
Attachment String

Microsoft Excel

Use the ODBC provider to connect to an Excel file.

The schema name is “Fdo”. There is only one schema per file. The range names
are used for class names. Column names are used for property names. A column
name is a text entry in a cell that is at the top of a column as defined by the
boundaries of the named range.

If a column named X and a column named Y are present, they are mapped
to an FDO geometric property whose type is Point and whose spatial context
association property is “Default”.

Three approaches were used to explore the mapping. The first approach looked
at the effect of cell content; the second approach looked at the effect of cell
format; the third approach looked at the effect of both.

The first approach involved copying data from a Microsoft Access database
into an Excel spreadsheet. The copy operation created a named range that
included all of the copied data. The name for the range came from the Access
database. By default all of the Excel cells have a format type of “General”. The

246 | Appendix C OSGeo FDO Provider for ODBC

accompanying table shows the mapping of sample cell content to FDO data
type.

Cell Content FDO Type
2 Double
64.52067 Double
Russia String
<empty> String

N String

NOTE All of the data in each column was consistent. The column containing “2”
contained only positive integers. The column containing “64.52067" contained
only similar numbers including negative values. The column containing the ‘N’
contained only single characters that were either ‘N’ or ‘Y’. The column containing
“Russia” contained only names. The column containing an empty cell contained
only empty cells.

The second approach involved setting up a named range consisting of 9
columns by 2 rows. The cells of the first row are formatted as “General” and
contain column labels. The cells of the second row are formatted respectively
“General,” “Number,” “Currency,” “Accounting,” “Date,” “Time,”
“Percentage,” “Fraction,” “Scientific” and “Text”. No cell in the second row
has content. The accompanying table shows the mapping of cell format to
FDO data type.

Excel Cell Format FDO Type

General String

Number Double
Currency Decimal
Accounting Decimal

Physical to Logical Schema Mappings | 247

Excel Cell Format FDO Type

Date DateTime
Time DateTime
Percentage Double
Fraction Double
Scientific Double
Text String

The intent of the third approach is to understand how the mapping would
be affected by content that violated the cell’s format or was inconsistent with
the data in the rest of the column.

Inserting “here” in the cells formatted as Number, Currency, Accounting,
Date, Time, Percentage, Fraction and Scientific caused them to be mapped to
String.

Inserting -12.25 in the cell formatted as Currency caused no change in the
mapping to Decimal.

Inserting 12.25 in the cell formatted as Date caused no change in the mapping
to DateTime. Excel converted 12.25 to “1/12/1900 6:00:00 AM”.

Inserting “here” in one of the cells in the column of integers copied from the
Access database resulted in no change to the mapping to Double. This may
be a bug.

Text File
Use the ODBC provider to connect to a text file. You must first create a DSN

using the XP Data Sources (ODBC) administrative tool. The DSN maps to a
directory, not a file. Each file in the directory is mapped to an FDO class.

248 | Appendix C OSGeo FDO Provider for ODBC

NOTE When selecting the directory for the DSN, you will notice a listing of the
files recognized as text files by the driver. It will recognize Vim backup files, for
example, Cities.txt~, as text files. The execution of a describe schema command
on a directory containing a Vim backup file caused an exception whose message
is “"RDBMS: [Microsoft][ODBC Text Driver] Cannot update. Database or object is
read-only.”. Removal of the Vim backup file prevented this exception.

The schema name is “Fdo”. There is only one schema per directory. The class
name is the name of the file, for example, “Cities_txt”. The property names
are taken from the first line in the file. Here are the first two lines from a
comma-delimited text file. The property names are “CITY_ID”, “NAME”, etc.
The table shows the mapping of the sample text to FDO data type.

"CITY ID","NAME","COUNTRY","POPULATION","CAPITAL","LATITUDE", "LON
GITUDE", "URL", "FOUNDED"
1, "Murmansk", "Russia", 468000,"N",68.96,33.08,,7/17/2008 0:00:00

Sample Text FDO Data Type
468000 Int32

Russia String

68.96 Double

<empty> String

NOTE Changing “LATITUDE” to “Y” and “LONGITUDE" to “X" causes these two
fields to be mapped to a geometric property called “Geometry” whose spatial
context association is to a spatial context called “Default”.

FDO Provider for ODBC Capabilities

The capabilities of an FDO provider are grouped in the following categories:
Connection
Schema

Commands

Expressions

FDO Provider for ODBC Capabilities | 249

W Filters
B Geometry

B Raster

Connection Capabilities

Use the FdoIConnectionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetConnectionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIConnectionCapabilities class description
in the FDO API Reference documentation.

The following capabilities are supported:
B Per connection threading

W static spatial content extent type
m SQL

B XML configuration

Schema Capabilities

Use the FdoISchemaCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetSchemaCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoISchemaCapabilities class description in
the FDO API Reference documentation.

The following capabilities are supported:
class and feature class class types
Boolean data type with a maximum length of 1 byte

|

|

B Byte data type with a maximum length of 1 byte

B DateTime data type with a maximum length of 12 bytes
|

Decimal data type with a maximum length of 56 digits (maximum decimal
precision of 28 and maximum decimal scale of 28)

Double data type with a maximum length of 8 bytes

Int16 data type with a maximum length of 2 bytes

250 | Appendix C OSGeo FDO Provider for ODBC

Int32 data type with a maximum length of 4 bytes
Int64 data type with a maximum length of 8bytes
Single data type with a maximum length of 4 bytes
String data type with a maximum length of unknown
Auto-generated data types Int16 and Int64

Identity properties of type Boolean, Byte, and DateTime.

Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Datastore

Name size limitation of unknown for a schema element name of type
FdoSchemaFlementNameType_Schema

Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Class

Name size limitation of unknown for a schema element name of type
FdoSchemaFlementNameType_Property

Name size limitation of unknown for a schema element name of type
FdoSchemaFlementNameType_Description

Characters that cannot be used for a schema element name: .:
Auto ID generation

Composite ID

Default value

Inheritance

Multiple schemas

Null value constraints

Schema overrides

Command Capabilities

Use the FdolICommandCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetCommandCapabilities()
method on the FdoIConnection object. For an explanation of the meaning

FDO Provider for ODBC Capabilities | 251

of the capabilities, consult the FdoICommandCapabilities class description in
the FDO API Reference documentation.

The following commands are supported:
FdoCommandType_Select
FdoCommandType_SelectAggregates
FdoCommandType_DescribeSchema

FdoCommandType_DescribeSchemaMapping

|

|

|

|

B FdoCommandType_Insert
B FdoCommandType_Delete

B FdoCommandType_Update

B FdoCommandType_GetSpatialContexts
|

FdoCommandType_SQLCommand
The following capabilities are supported:
simple functions in Select and SelectAggregate commands
use of expressions for properties in Select and SelectAggregates commands

|

|

B use of Distinct in SelectAggregates command

B availability of ordering in Select and SelectAggregates command
|

availability of grouping criteria in SelectAggregates command

Filter Capabilities

Use the FdolFilterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetFilterCapabilities() method on the
FdoIConnection object. For an explanation of the meaning of the capabilities,
consult the FdolFilterCapabilities class description in the FDO API Reference
documentation.

The following capabilities are supported:
B Conditions of type comparison, like, in, null, and spatial.

W spatial operations of type Intersects, Within, Inside, and Envelopelntersects.

252 | Appendix C OSGeo FDO Provider for ODBC

Expression Capabilities

Use the FdolExpressionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetExpressionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIExpressionCapabilities class description in
the FDO API Reference documentation.

Basic and function expressions are supported.
The full range of expression functions are supported as set out in the

Capabilities chapter.

Geometry Capabilities

Use the FdolGeometryCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetGeometryCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdolGeometryCapabilities class description in
the FDO API Reference documentation.

Dimensionality XYZ is supported. The Point geometry types is supported.

Raster Capabilities

Use the FdoIRasterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetRasterCapabilities() method on the
FdoIConnection object. For an explanation of the meaning of the capabilities,
consult the FdoIRasterCapabilities class description in the FDO API Reference
documentation.

No Raster capabilities are supported.

FDO Provider for ODBC Capabilities | 253

254

OSGeo FDO Provider for
SDF

This appendix discusses FDO API development issues that are related to OSGeo FDO Provider
for SDE.

What Is FDO Provider for SDF?

The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for SDF is a standalone file

format that supports GIS data.

The FDO Provider for SDF uses Autodesk's spatial database format, which is a
file-based personal geodatabase that supports multiple features/attributes, spatial
indexing, interoperability, file-locking, and high performance for large data
sets.

The SDF file format has the following characteristics:

SDF files can be read on different platforms.
B The SDF file has its own spatial indexing.

B SDF files can store geometric and non-geometric data with minimum
overhead.

B Although it does not support concurrency control (locking), the SDF file
format is a valid alternative to RDBMS.

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the OSGeo FDO Provider for SDF API Reference Help (SDF_Provider_API.chm).

255

FDO Provider for SDF Capabilities

The capabilities of an FDO provider are grouped in the following categories:
Connection
Schema

Commands

|

|

|

W Expressions
W Filters

B Geometry
|

Raster

Connection Capabilities

Use the FdoIConnectionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetConnectionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIConnectionCapabilities class description
in the FDO API Reference documentation.

The following capabilities are supported:
B Per command threaded

B dynamic spatial content extent type
W Write
|

Flush

Schema Capabilities

Use the FdoISchemaCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetSchemaCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoISchemaCapabilities class description in
the FDO API Reference documentation.

The following capabilities are supported:

B class and feature class class types

256 | Appendix D OSGeo FDO Provider for SDF

Boolean data type with a maximum length of 1 byte
Byte data type with a maximum length of 1 byte
DateTime data type with a maximum length of 12 bytes

Decimal data type with a maximum length of unknown digits (maximum
decimal precision of unknown and maximum decimal scale of unknown)

Double data type with a maximum length of 8 bytes
Int16 data type with a maximum length of 2 bytes
Int32 data type with a maximum length of 4 bytes
Int64 data type with a maximum length of 8bytes
Single data type with a maximum length of 4 bytes
String data type with a maximum length of unknown
Int32 auto-generated data type

Identity properties of type Boolean, Byte, DateTime, Decimal, Double,
Int16, Int32, Int64, Single, and String

Name size limitation of 255 for a schema element name of type
FdoSchemaElementNameType_Datastore

Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Schema

Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Class

Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Property

Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Description

Characters that cannot be used for a schema element name: .:
Association properties

Auto ID generation

Composite ID

Exclusive value range constraints

FDO Provider for SDF Capabilities | 257

Inclusive value range constraints
Inheritance
Null value constraints

Schema modification

Value constraints list

Command Capabilities

Use the FdolICommandCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetCommandCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoICommandCapabilities class description in
the FDO API Reference documentation.

The following commands are supported:
FdoCommandType_Select
FdoCommandType_SelectAggregates
FdoCommandType_Insert
FdoCommandType_Delete
FdoCommandType_Update

FdoCommandType_DescribeSchema

|

|

|

|

|

|

B FdoCommandType_ApplySchema
B FdoCommandType_CreateSpatialContext
B FdoCommandType_GetSpatialContexts
B FdoCommandType_CreateDataStore

B FdoCommandType_DestroyDataStore

B SdfCommandType_ExtendedSelect

|

SdfCommandType_CreateSDFFile

The following capabilities are supported:

B simple functions in Select and SelectAggregate commands

258 | Appendix D OSGeo FDO Provider for SDF

B use of expressions for properties in Select and SelectAggregates commands

B use of Distinct in SelectAggregates command

Filter Capabilities

Use the FdolFilterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetFilterCapabilities() method on the
FdoIConnection object. For an explanation of the meaning of the capabilities,
consult the FdolFilterCapabilities class description in the FDO API Reference
documentation.

The following capabilities are supported:
B Conditions of type comparison, like, in, null, and spatial.

W spatial operations of type Contains, Disjoint, Inside, Intersects, Within,
and Envelopelntersects

Expression Capabilities

Use the FdolExpressionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetExpressionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIExpressionCapabilities class description in
the FDO API Reference documentation.

Basic and function expressions are supported.
The following functions are supported:
B GeometricProperty SpatialExtents(GeometricProperty geomValue)

B Double Avg(<type> value) where <type> is one of Byte, Decimal, Double,
Int16, Int32, Int64, or Single.

B Double Ceil(<type> value) where <type> is one of Decimal, Double, or
Single

B String Concat(String str1Val, String str2Val)

B Int64 Count(<type> value) where <type> is one of Boolean, Byte, DateTime,
Decimal, Double, Int16, Int32, Int64, Single, String, BLOB, CLOB,
GeometricProperty, AssociationProperty

B Double Floor(<type> value) where <type> is one of Decimal, Double, or
Single

FDO Provider for SDF Capabilities | 259

String Lower(String value)

Double Max(<type> value) where <type> is one of Byte, Decimal, Double,
Int16, Int32, Int64, or Single.

Byte Min(<type> value) where <type> is one of Byte, Decimal, Double,
Int16, Int32, Int64, or Single.

Double Sum(<type> value) where <type> is one of Byte, Decimal, Double,
Int16, Int32, Int64, or Single.

String Upper(String value)

Geometry Capabilities

Use the FdolGeometryCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetGeometryCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIGeometryCapabilities class description in
the FDO API Reference documentation.

Dimensionality XYZM is supported. The geometry component types Ring,
LinearRing, CircularArcSegment, and LineStringSegment are supported. The
following geometry types are supported.

Point

LineString
Polygon
MultiPoint
MultiLineString
MultiPolygon
MultiGeometry
CurveString
CurvePolygon
MultiCurveString

MultiCurvePolygon

260 | Appendix D OSGeo FDO Provider for SDF

Raster Capabilities

Use the FdoIRasterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetRasterCapabilities() method on the
FdolConnection object. For an explanation of the meaning of the capabilities,
consult the FdoIRasterCapabilities class description in the FDO API Reference
documentation.

No Raster capabilities are supported.

FDO Provider for SDF Capabilities | 26|

262

OSGeo FDO Provider for

SHP

This appendix discusses FDO API development issues that are related to OSGeo FDO Provider

for SHP.

What Is FDO Provider for SHP?

The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for SHP provides FDO with
access to an SHP-based data store.

The FDO Provider for SHP uses a standalone file format that supports GIS data.
The FDO Provider for SHP (Shape) has the following characteristics:

Read-only access is provided to pre-existing spatial and attribute data from
an Environmental Systems Research Institute (ESRI) Shape file (SHP).

The FDO Provider for SHP can run in a multi-platform environment,
including Windows and Linux.

A Shape file consists of three separate files: SHP (shape geometry), SHX (shape
index), and DBF (shape attributes in dBASE format).

The FDO Provider for SHP accesses the information in each of the three
separate files, and treats each SHP, and its associated DBF file, as a feature
class with a single geometry property, and optionally, with data attribute
properties.

Schema configuration of the data store is provided to the FDO Provider for
SHP through an XML file containing the Geographic Markup Language

263

(GML) definition of the schema that maps SHP and DBF data in the data
store to feature classes and property mappings in the FDO data model.

m Although it does not support concurrency control (locking), the SHP file
format is a valid alternative to RDBMS.

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the O8Geo FDO Provider for SHP API Reference Help (SHP_Provider_APIl.chm).

Creating SHP Files for the Logical to Physical
Schema Mapping

See http://shapelib.maptools.org/. The shape files used in this exercise were
created using a .NET wrapper that you can obtain from the ShapeLib site. The
.NET wrapper package contains test code that was easily adapted to the purpose
of creating shape files for the schema mapping exercise.

The shape files used for the purpose of mapping FDO logical types to shape
native types were created using the following method. The path argument is
the path to a filename whose pattern is <base>.shp. The type argument specifies
the type of the shape file’s geometry, for example, ShapLib.ShapeType.Point.
Execution of the method creates the named <base>.shp file as well as a
<base>.shx file.

using MapTools;
public bool CreateShpFile(string path, Shapelib.ShapeType type)
{
IntPtr hShp = Shapelib.SHPCreate (path, type):;
if (hShp.Equals (IntPtr.Zero)) return false;
else
{
ShapeLib.SHPClose (hShp) ;
return true;

b}

The FDO ApplySchema creates the <base>.dbf and <base>.cpg. It will also
create the <base>.prj file if a spatial context has been created and the name
of the coordinate system referenced by the spatial context definition has been
assigned to the feature geometric property definition’s spatial context
association property.

264 | Appendix E OSGeo FDO Provider for SHP

http://shapelib.maptools.org/

Creating SHP Files for the Physical to Logical
Schema Mapping

To do the physical to logical schema mapping requires shp files containing
all possible shp data types . Two approaches for creating such shp files have
been used. The first approach is to use the ArcSDE sde2shp command to
convert an ArcSDE schema to a shapefile schema. The second approach is to
use the ShapeLib C library to create the shapefiles .

sde2shp

This command converts the contents of an ArcSDE data store into a set of
shape files. The conversion is guided by a text specification that maps an
ArcSDE column name to a tuple consisting of a shape table column name, a
shape column type identifier, a column width, and optionally the number of
deciaml places.

The source ArcSDE data store for this exercise is that specified in the ArcSDE
appendix in the topic about physical to logical schema mapping. The data
store contained a table called “ExistingTable”. This table containing a geometry
column called “featgeom”. The featgeom column allows only point geometries
to be stored. A shape geometry can only be of one type. So, for the conversion
to work, the ArcSDE geometry column has to be restricted to contain only
one geometry type. The source ArcSDE data store contained no data. The
ArcSDE geometry was created with a coordinate system specified.

The syntax of the command follows: sde2shp -o init -1

ExistingTable, featgeom -f points -a file=points.txt -t point -1
esri_sde_ss -u sde -p fdotest. The -f argument becomes the root name of
the shape files that are created by the command (points.shp, points.shx,
points.dbf, points.idx, and points.prj). The -t argument is the shape geometry
type. The -i argument is the name of the ArcSDE server instance; the symbolic
name is mapped to a TCP port in the
C:\WINDOWS\system32\drivers\etc\services file. The -u and -p arguments
identify a username and password in the data store. The -a argument identifies
the file used to specify the conversion of the non-geometry column
conversions.

The contents of the points.txt conversion file are as follows:

Creating SHP Files for the Physical to Logical Schema Mapping | 265

smInt4Col smInt4 N 4
intl16Col intl6Col N 4
int32Col int32Col N 10
float32Col float32C N 6 2
float64Col float64C N 15 4
intl0 Intl0 N 10

float4 4 float4d 4 N 4 3
double7 4 doubl7 2 N 7 2
string64 str64 C 64
nStringCol nStrCol C 254
dateCol dateCol D 8

NOTE Initial values for column widths and number of decimal places were taken
from the output of the sdetable -o describe command. These values were changed
over the course of several executions of the sde2shp in response to warning and
error messages issued by the sde2shp command.

ShapelLib

See http://shapelib.maptools.org/. The shape files used in this exercise were
created using a .NET wrapper that you can obtain from the ShapeLib site. The
.NET wrapper package contains test code that was easily adapted to the purpose
of creating shape files for the schema mapping exercise.

The <base>.shp and <base>.shx files are created by the shapeLib.SHpPCreate
method.

The <base>.prj file is created by using a text editor to create the file and
inserting the WKT string specification for the coordinate system.

The <base>.dbf file is created by the following code:

IntPtr dbfFile = MapTools.ShapeLib.DBFCre

ate("../../Points/points.dbf");

int logicalColNum = MapTools.Shapelib.DBFAddField (dbfFile, "Logic

alCol", Shapelib.DBFFieldType.FTLogical, 1, 0);

int strColNum = MapTools.ShapelLib.DBFAddField (dbfFile, "StrCol",
ShapelLib.DBFFieldType.FTString, 64, 0);

int dateColNum = MapTools.ShapelLib.DBFAddField (dbfFile, "DateCol",
ShapelLib.DBFFieldType.FTDate, 8, 0);

int integer20 ONum = MapTools.ShapeLib.DBFAddField (dbfFile, "In

teger20", ShapelLib.DBFFieldType.FTInteger, 20, 0);

int doublel8 4Num = MapTools.ShapelLib.DBFAddField (dbfFile,
"Doublel8 4", ShapeLib.DBFFieldType.FTDouble, 18, 4);

MapTools.ShapeLib.DBFClose (dbfFile) ;

266 | Appendix E OSGeo FDO Provider for SHP

http://shapelib.maptools.org/

Logical to Physical Schema Mapping

The SHP provider supports the DestroySchema and ApplySchema commands.
So it is possible to create shape files whose schema has been defined using
FDO and then map the logical FDO data types to the shape native types. This
mapping is described here. The creation of the shape file used for this purpose
is described in this appendix.

FDO Type Native Type, Column Width, Decimal Places
Boolean L1

DateTime D, 8

Decimal N, >0, >0

Int32 N, 11

String C,>0

Physical to Logical Schema Mapping

When FDO describes the schema of an existing shapefile that was not created
by the ApplySchema command, it maps native data types to FDO data types.
Two shapfiles have been mapped. One shapfile has been created using the
ArcSDE command sde2shp. The creation of the source ArcSDE schema is
described in the appendix for the ArcSDE provider. The other shapfile has
been created using a .NET wrapper for the ShapeLib C Library. These two
methods for creating shapefiles are described in this appendix.

The schema name is “Default”. The class name is the root name of the file.
For example, if the filename is “points.shp”, the class name is “points”. The
attribute property names are the dBASE column names. The geometry property
name is “Geometry”. The value of the feature class’s SpatialContextAssociation
property is the name of the coordinate system specified in the .pzj file. For
example, if the coordinate system specification in the .prj has the pattern
“PROJCS]...]", the value of the SpatialContextAssociation proerty is the value
of the <name> parameter in the pattern “PROJCS[<name>...]".

Logical to Physical Schema Mapping | 267

sde2shp

The mapping of SHP (.dbf) native types to FDO data types for the SHP schema
that came from the conversion of an ArcSDE schema is in the following table.

Native Type, Column Width, Decimal

FDO Data Type

Places

N, 4 Decimal
N, 10 Decimal
N, 6, 2 Decimal
N, 15, 4 Decimal
N, 4,3 Decimal
N, 7,2 Decimal
C String

D DateTime
ShapelLib

The mapping of SHP (.dbf) native types to FDO data types for the SHP schema
that was created by a ShapeLib program is in the following table.

Native Type, Column Width, Decimal Places FDO Data Type

L1 Boolean
C, 64 String

D, 8 DateTime
N, 20, 0 Decimal

268 | Appendix E OSGeo FDO Provider for SHP

Native Type, Column Width, Decimal Places FDO Data Type

N, 18. 4 Decimal

FDO Provider for SHP Capabilities

The capabilities of an FDO provider are grouped in the following categories:

Connection
Schema
Commands
Expressions
Filters
Geometry

Raster

Connection Capabilities

Use the FdoIConnectionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetConnectionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIConnectionCapabilities class description
in the FDO API Reference documentation.

The following capabilities are supported:

Per connection threading

static spatial content extent type
XML configuration

multiple spatial contexts

Write

Multi-user write

Flush

FDO Provider for SHP Capabilities | 269

Schema Capabilities

Use the FdoISchemaCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetSchemaCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoISchemaCapabilities class description in
the FDO API Reference documentation.

The following capabilities are supported:
class and feature class class types
Boolean data type with a maximum length of 1 byte

DateTime data type with a maximum length of 12 bytes

Decimal data type with a maximum length of 255 digits (maximum decimal
precision of 255 and maximum decimal scale of 255)

Int32 data type with a maximum length of 4 bytes
String data type with a maximum length of 255
Int32 auto-generated data type

Identity properties of type Int32

Name size limitation of 255 for a schema element name of type
FdoSchemaElementNameType_Datastore

B Name size limitation of 7 for a schema element name of type
FdoSchemaFlementNameType_Schema

B Name size limitation of 255 for a schema element name of type
FdoSchemaElementNameType_Class

B Name size limitation of 11 for a schema element name of type
FdoSchemaElementNameType_ Property

B Name size limitation of O for a schema element name of type
FdoSchemaFlementNameType_Description

Characters that cannot be used for a schema element name: .:
Auto ID generation

Multiple schemas

Null value constraints

270 | Appendix E OSGeo FDO Provider for SHP

B Schema modification

B Schema overrides

Command Capabilities

Use the FdolICommandCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetCommandCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoICommandCapabilities class description in
the FDO API Reference documentation.

The following commands are supported:
FdoCommandType_Select
FdoCommandType_SelectAggregates
FdoCommandType_Insert
FdoCommandType_Delete
FdoCommandType_Update

|

|

|

|

|

B FdoCommandType_DescribeSchema
B FdoCommandType_DescribeSchemaMapping
B FdoCommandType_ApplySchema

B FdoCommandType_DestroySchema

B FdoCommandType_CreateSpatialContext

B FdoCommandType_GetSpatialContexts

|

SdfCommandType_CreateSDFFile

The following capabilities are supported:
B simple functions in Select and SelectAggregate commands
B use of expressions for properties in Select and SelectAggregates commands

W use of Distinct in SelectAggregates command

FDO Provider for SHP Capabilities | 27|

Filter Capabilities

Use the FdolFilterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetFilterCapabilities() method on the
FdolConnection object. For an explanation of the meaning of the capabilities,
consult the FdolFilterCapabilities class description in the FDO API Reference
documentation.

The following capabilities are supported:
B Conditions of type comparison, like, in, null, and spatial

W spatial operations of type Within, Inside, Intersects, Envelopelntersects

Expression Capabilities

Use the FdolExpressionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetExpressionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIExpressionCapabilities class description in
the FDO API Reference documentation.

Basic and function expressions are supported.

The following functions are supported:

B Double Avg(<type> value) where <type> is one of Byte, Decimal, Double,
Single, Int16, Int32, or Int64.

B Double Ceil(<type> value) where <type> is one of Decimal, Double, or
Single

B String Concat(String str1Val, String str2Val)

B Int64 Count(<type> value) where <type> is one of Boolean, Byte, DateTime,
Decimal, Double, Int16, Int32, Int64, Single, String, BLOB, CLOB,
ObjectProperty, GeometricProperty, AssociationProperty, or RasterProperty

B Decimal Floor(<type> value) where <type> is one of Decimal, Double, or
Single

B String Lower(String value)

B Double Max(<type> value) where <type> is one of Byte, Decimal, Double,
Int16, Int32, Int64, or Single

B Byte Min(<type> value) where <type> is one of Byte, Decimal, Double,
Int16, Int32, Int64, or Single

272 | Appendix E OSGeo FDO Provider for SHP

B Double Sum(<type> value) where <type> is one of Byte, Decimal, Double,
Int16, Int32, Int64, or Single.

B String Upper(String value)

B GeometricProperty SpatialContexts(GeometricProperty property)

Geometry Capabilities

Use the FdolGeometryCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetGeometryCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdolGeometryCapabilities class description in
the FDO API Reference documentation.

Dimensionality XYZM is supported. The geometry component types LinearRing
and LineStringSegment are supported. The following geometry types are
supported.

LineString

|

|

m Polygon
B MultiPoint
|

MultiLineString

Raster Capabilities

Use the FdoIRasterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetRasterCapabilities() method on the
FdoIConnection object. For an explanation of the meaning of the capabilities,
consult the FdoIRasterCapabilities class description in the FDO API Reference
documentation.

No Raster capabilities are supported.

FDO Provider for SHP Capabilities | 273

274

OSGeo FDO Provider for

SQL Server Spatial

Logical to Physical Schema Mapping

The FDO ApplySchema command creates a table for each class in the command’s
class collection. The mapping of logical FDO data types to native types is

described here.

NOTE The definition of the FDO Decimal data type requires that the precision
property be set as a minimum to 1; in this case the scale property is set to 0 by
default. Precision is the number of digits in the number, and scale is the number of
digits to the right of the decimal point. The maximum number of digits in the native

type is 38.

NOTE The definition of the FDO String data type requires that the length property
be set.

FDO Data Type Native Type

Boolean bit

Byte tinyint

DateTime datetime

Decimal (precision property is set to 20,
and scale property is set to 4)

decimal(20,4)

275

FDO Data Type Native Type

Double float

Int16 smallint
Int32 int

Int64 bigint

Single real

String (length property set to 64) nvarchar(64)

geometry with a geodetic coordinate sys- geography
tem

geometry with a Euclidean coordinate sys- geometry
tem

Physical to Logical Schema Mapping

When FDO describes the schema of an existing table that was not created by
the ApplySchema command, it maps native data types to FDO data types.
This mapping is described here.

The database name is used for the feature schema name. The table names are
used for class names. Column names are used for property names.

Some native types are not mapped to FDO data types and so do not appear
in the output of the describe schema command even if they exist in the table.
They are date, datetim2(7), datetimeoffset(7), hierarchyid, sql_variatn, time(7),
and xml. The mapping of the rest of the native data types is in the following
table.

276 | Appendix F OSGeo FDO Provider for SQL Server Spatial

NOTE The geography and geometric native types map to the geometric property
type. FDO properties are classified as data, geometric, object, association, or raster.
Only the data properties are further classified.

Native Type FDO Type

bigint Int64
binary(50) BLOB

bit Boolean
char(10) String
datetime DateTime

decimal(18,0) Decimal;

float Double
geography Geometric
geometry Geometric
image BLOB

int Int32
money Decimal
nchar(10) String
ntext String

numeric(18,0) Decimal

nvarchar(50) String

Physical to Logical Schema Mapping | 277

Native Type FDO Type

nvarchar(MAX) String

real Single

smalldatetime DateTime

smallint Int16
smallmoney Decimal
text String
timestamp DateTime
tinyint Byte

uniqueidentifier ~ String

varbinary(50) BLOB

varchar(50) String

varbinary(MAX) BLOB

278 | Appendix F OSGeo FDO Provider for SQL Server Spatial

OSGeo FDO Provider for
WFS

This appendix discusses FDO API development issues that are related to OSGeo FDO Provider
for WES.

What Is FDO Provider for WFS?

The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for WFS provides FDO with
access to a WFS-based data store.

An OGC Web Feature Service (WFS) provides access to geographic features that
are stored in an opaque data store in a client/server environment. A client uses
WES to retrieve geospatial data that is encoded in Geography Markup Language
(GML) from a single or multiple Web Feature Service. The communication
between client and server is encoded in XML. If the WFS response includes
feature geometries, it is encoded in Geography Markup Language (GML), which
is specified in the OpenGIS Geographic Markup Language Implementation
Specification.

Using FDO Provider for WES data manipulation operations, you can do the
following:

Query features based on spatial and non-spatial constraints.
Create new feature instances.

Delete feature instances.

Update feature instances.

279

B Lock feature instances.

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf).

NOTE There is no public APl documentation for the FDO Provider for WFS;
functionality is available through the main FDO API.

FDO Provider for WFS Capabilities

The capabilities of an FDO provider are grouped in the following categories:
Connection
Schema

Commands

|

|

|

B Expressions
m Filters

B Geometry
|

Raster

Connection Capabilities

Use the FdoIConnectionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetConnectionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIConnectionCapabilities class description
in the FDO API Reference documentation.

The following capabilities are supported:
B Per connection threaded
W static spatial content extent type

B multiple spatial contexts

Schema Capabilities

Use the FdoISchemaCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetSchemaCapabilities()

280 | Appendix G OSGeo FDO Provider for WFS

method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoISchemaCapabilities class description in
the FDO API Reference documentation.

The following capabilities are supported:

class and feature class class types

Boolean data type with a maximum length of unknown bytes
Byte data type with a maximum length of unknown bytes
DateTime data type with a maximum length of unknown bytes

Decimal data type with a maximum length of unknown digits (maximum
decimal precision of unknown and maximum decimal scale of unknown)

Double data type with a maximum length of unknown bytes
Int16 data type with a maximum length of unknown bytes
Int32 data type with a maximum length of unknown bytes
Int64 data type with a maximum length unknown 8 bytes
Single data type with a maximum length of unknown bytes
String data type with a maximum length of unknown

Identity properties of type Boolean, Byte, DateTime, Decimal, Double,
Int16, Int32, Int64, Single, and String

Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Datastore

Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Schema

Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Class

Name size limitation of unknown for a schema element name of type
FdoSchemaFlementNameType_Property

Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Description

Characters that cannot be used for a schema element name: (null)

Composite ID

FDO Provider for WFS Capabilities | 281

B Multiple schemas

B Object properties

Command Capabilities

Use the FdolICommandCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetCommandCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoICommandCapabilities class description in
the FDO API Reference documentation.

The following commands are supported:
FdoCommandType_Select
FdoCommandType_SelectAggregates

|

|

B FdoCommandType_DescribeSchema
B FdoCommandType_GetSpatialContexts
|

FdoRdbmsCommandType_GetSpatiallndexes

The following capabilities are supported:

B use of expressions for properties in Select and SelectAggregates commands

Filter Capabilities

Use the FdolFilterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetFilterCapabilities() method on the
FdoIConnection object. For an explanation of the meaning of the capabilities,
consult the FdolIFilterCapabilities class description in the FDO API Reference
documentation.

No capabilities are supported:

Expression Capabilities

Use the FdolExpressionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetExpressionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIExpressionCapabilities class description in
the FDO API Reference documentation.

282 | Appendix G OSGeo FDO Provider for WFS

Basic expressions are supported.

The following functions are supported:

B GeometricProperty SpatialExtents(GeometricProperty property)

Geometry Capabilities

Use the FdolGeometryCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetGeometryCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdolGeometryCapabilities class description in
the FDO API Reference documentation.

Dimensionality XYZM is supported. The geometry component types Ring,
LinearRing, CircularArcSegment, and LineStringSegment are supported. The
following geometry types are supported.

W Point

B LineString
Polygon
MultiPoint
MultiLineString
MultiPolygon
MultiGeoemtry
CurveString
CurvePolygon

MultiCurveString

MultiCurvePolygon

Raster Capabilities

Use the FdoIRasterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetRasterCapabilities() method on the
FdoIConnection object. For an explanation of the meaning of the capabilities,
consult the FdoIRasterCapabilities class description in the FDO API Reference
documentation.

FDO Provider for WFS Capabilities | 283

No Raster capabilities are supported.

284 | Appendix G OSGeo FDO Provider for WFS

OSGeo FDO Provider for
WMS

This appendix discusses FDO API development issues that are related to OSGeo FDO Provider
for WMS.

What Is FDO Provider for WMS?

The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for WMS provides FDO with
access to a WMS-based data store.

An Open Geospatial Consortium (OGC) Web Map Service (WMS) produces
maps of spatially referenced data dynamically from geographic information.
This international standard defines a "map" to be a portrayal of geographic
information as a digital image file suitable for display on a computer screen. A
map is not the data itself. Maps by WMS are generally rendered in a pictorial
format, such as PNG, GIF or JPEG, or occasionally as vector-based graphical
elements in Scalable Vector Graphics (SVG) or Web Computer Graphics Metafile
(WebCGM) formats.

The FDO Provider for WMS has the following characteristics:

B The FDO Provider for WMS serves up map information originating from an
OGC Basic Web Map Service that provides pictorially formatted images, such
as PNG, GIF, or JPEG.

B WMS map data is exposed through an FDO feature schema whose classes
contain an FDO Raster property definition. The FDO schema exposed from
the FDO Provider for WMS conforms to a pre-defined FDO schema that is

285

specific to WMS and that acts as the basis for all FDO interaction with
WMS data, regardless of the originating source of the WMS images.

B WMS data manipulation operations are limited to querying features based
on spatial and non-spatial constraints. Schema manipulation operations
are not supported.

The FDO Provider for WMS can run in a multi-platform environment,
including Windows and Linux.

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the OSGeo FDO Provider for WMS API Reference Help (WMS_Provider_API.chm).

FDO Provider for WMS Capabilities

The capabilities of an FDO provider are grouped in the following categories:
Connection

Schema

Commands

Expressions

Filters

Geometry

Raster

Connection Capabilities

Use the FdoIConnectionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetConnectionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIConnectionCapabilities class description
in the FDO API Reference documentation.

The following capabilities are supported:
B Per connection threading
W static spatial content extent type

B XML configuration

286 | Appendix H OSGeo FDO Provider for WMS

Schema Capabilities

Use the FdoISchemaCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetSchemaCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoISchemaCapabilities class description in
the FDO API Reference documentation.

The following capabilities are supported:

B class and feature class class types

B String data type with a maximum length of unknown

B BLOB data type with a maximum length of unknown bytes

B Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Datastore

B Name size limitation of unknown for a schema element name of type
FdoSchemaFlementNameType_Schema

B Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Class

B Name size limitation of unknown for a schema element name of type
FdoSchemaElementNameType_Property

B Name size limitation of unknown for a schema element name of type
FdoSchemaFlementNameType_Description

B Inheritance

B Schema overrides

Command Capabilities

Use the FdolICommandCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetCommandCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoICommandCapabilities class description in
the FDO API Reference documentation.

The following commands are supported:
B FdoCommandType_Select

B FdoCommandType_SelectAggregates

FDO Provider for WMS Capabilities | 287

B FdoCommandType_DescribeSchema
B FdoCommandType_DescribeSchemaMapping

B FdoCommandType_GetSpatialContexts

The following capabilities are supported:

B simple functions in Select and SelectAggregate commands

Filter Capabilities

Use the FdolFilterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetFilterCapabilities() method on the
FdoIConnection object. For an explanation of the meaning of the capabilities,
consult the FdolFilterCapabilities class description in the FDO API Reference
documentation.

No filter capabilities are supported:

Expression Capabilities

Use the FdolExpressionCapabilities object methods to learn about these
capabilities. You can get this object by calling the GetExpressionCapabilities()
method on the FdoIConnection object. For an explanation of the meaning
of the capabilities, consult the FdoIExpressionCapabilities class description in
the FDO API Reference documentation.

Function expressions are supported.

The following functions are supported:

B BLOB RESAMPLE(BLOB raster, Double minX, Double minY, Double maxX,
Double maxY, Int32 height, Int32 width)

B BLOB CLIP(BLOB raster, Double minX, Double minY, Double maxX, Double
maxy)

B GeometricProperty SpatialExtents(BLOB raster)

Geometry Capabilities
Use the FdolGeometryCapabilities object methods to learn about these

capabilities. You can get this object by calling the GetGeometryCapabilities()
method on the FdoIConnection object. For an explanation of the meaning

288 | Appendix H OSGeo FDO Provider for WMS

of the capabilities, consult the FdoIGeometryCapabilities class description in
the FDO API Reference documentation.

Dimensionality XY is supported. The geometry component type LinearRing
is supported. The following geometry types are supported.

m Polygon

Raster Capabilities

Use the FdoIRasterCapabilities object methods to learn about these capabilities.
You can get this object by calling the GetRasterCapabilities() method on the
FdoIConnection object. For an explanation of the meaning of the capabilities,
consult the FdoIRasterCapabilities class description in the FDO API Reference
documentation.

The Raster capability is supported. The following raster data models are
supported:

Bitonal/1-bit/pixel/Unsigned Integer
Gray/8-bit/pixel/Unsigned Integer
RGB/24-bit/pixel/Unsigned Integer
RGBA/32-bit/pixel/Unsigned Integer

Palette/8-bit/pixel/Unsigned Integer

FDO Provider for WMS Capabilities | 289

290

Index

A

AGF 152
API

defined 5

FDO 5
application development 11
architecture and packages 8
ArcSDE

limitations 212
ArcSDE Provider 211

Capabilities 227, 237, 249, 256,

269, 280, 286

Software Requirements 211
association property 15
Autodesk Geometry Format (AGF) 152

behaviors, GisPtr 25
BinaryOperations 146

C
calls, chain 25
capabilities
FDO Provider for ArcSDE 227, 237,
249, 256, 269, 280, 286
class

contained 91
feature 14
IdentityProperty and
ObjectProperty 91-92
standalone 91
Class Diagram, FDO Schema Element 93
class type 14
collection classes 23
comparison operations 146
connection
ArcSDE 216
establishing 29

semantics 27
constraints, expression text 141
constraints, filter text 141
constraints, provider-specific 141
Contained Class 91
context, spatial 18

D

data concepts 13

data property
defined 15

data sources and data stores 27

data store 18
defined 18
FDO Provider for ArcSDE 211
FDO Provider for MySQL 233
FDO Provider for ODBC 243
FDO Provider for SDF 255
FDO Provider for SHP 263
FDO Provider for WMS 285
filtering 19, 139
locking 19
querying 129
schemas and the 85
transactions 20

data stores, data sources and 27

data type
DATETIME 145
DOUBLE 145

IDENTIFIER 144

INTEGER 145

PARAMETER 144

STRING 144
data type mappings 217
data types 144
DataStore

FDO Provider for ArcSDE 211
develop applications 11
dimensionality, defined 15

Index | 291

E

edit a GML schema file 101
element states, schema 94
elements of a schema 14
example
creating a schema 111
creating a schema read in from an
XML file 114
deleting property values 127
describing a schema 114
destroying a schema 114
inserting an Integer, a string, and a
Geometry Value 122
query 130
schema management 111
updating property values 125
expression grammar 143
expression text 140
Expression, defined 19
expressions 140

F

factory, abstract geometry 159
FDO
architecture and packages 8
FDO API
defined S
FDO concepts
commands 18
data store 18
expression 19
feature class 14
filter 19
geometry property 16
locking 19
object property 17
property 15
spatial context 18
transactions 20
FDO In General 161
FDO Provider for ArcSDE
capabilities 227, 237, 249, 256, 269,
280, 286
connection 216

292 | Index

defined 211

software requirements 211
FDO Provider for MySQL

defined 233
FDO Provider for ODBC

defined 243
FDO Provider for SDF 255

defined 255
FDO Provider for SDF, defined 255
FDO Provider for SHP

defined 263
FDO Provider for WMS

defined 285
FDO schema element class diagram 93
FDO XML format 95
FDOClass 90
FDOFeatureClass 90
FDOIActivateLongTransaction 136
FDOICommitLongTransaction 137
FDOICreateLongTransaction 137
FDOIDeactivateLongTransaction 136
FDOIGetLongTransactions 137
FDOIRollbackLongTransaction 136
feature class 14
feature schema, creatinga 218
filter

grammar 141

Filter 139
defined 19

filter text 140

filters 19

G

geometric types, mapping between
Geometry and 160
geometry 16
Geometry
basic or pure 152
properties 16
types 159
value 147
working with 151
geometry and geometric types, mapping
between 160
Geometry API 151

GIS_SAFE_RELEASE (*ptr) 21-22

GisPtr 22

GML schema file, creating and
editing 101

H

handler, exception 23

K

keywords, filter and expression 144

L

locking 19
ArcSDE limitations 213
defined 19

long transaction
defined 135
leaf 135
root 20, 135-136

M

mappings
data type 217
physical 86
memory management 21
models, modifying 94

N

non-feature class issues 91
non-smart ptr 26

o

object property
defined 17
ObjectProperty types 90
OGC WKT 151
operations, comparison 146
operations, data maintenance 119

operator precedence 146
operators 146
overrides

schema 88

P

package
connections 27
Schema 85

packages, FDO 8
parent in the schema classes 86
properties
base 85
Geometry 16
property
association 15
data 15
defined 15
object 17
Raster 17
property definitions, adding GML
for 105
property values 120
data 120
geometry 121
Provider for ArcSDE
connection 216
defined 211
Provider for MySQL
defined 233
Provider for ODBC
defined 243
Provider for SHP
defined 263
provider, defined 9

Q

query
creating 129
example 130

Index | 293

R

raster property

defined 17
references, cross-schema 86
requirements

FDO Provider for ArcSDE 211
rollback mechanism, schema 95
root long transaction, defined 20

S

SampleFeatureSchema.xml 115
schema

defined 13

schema elements 14
schema management 111
schema mapping, defined 14
schema overrides 14
schema, create 89, 218
schemas

describing 92

element states 94

modifying models 94

rollback mechanism 95

working with 88
SDF

FDO Provider for 255
software requirements 211
spatial context 161
spatial context, defined 18
special characters 147

294 | Index

standalone class 91
states, schema element 94
supported interfaces, LT 136

T

text, expression 140
text, filter 140
transaction, long 20

types
Geometry 159

ObjectProperty 90

U

UnaryOperations 146

A\

values
deleting 126
updating 125

w
WKT 151

X

XML Format, FDO 95

	Contents
	About This Guide
	Audience and Purpose
	How This Guide Is Organized
	What’s New

	Introduction
	What Is the FDO API?
	From the Perspective of the Client Application User
	From the Perspective of the Client Application Engineer

	Getting Started
	FDO Architecture and Providers
	What Is a Provider?
	Developing Applications

	FDO Concepts
	Data Concepts
	Operational Concepts

	Development Practices
	Memory Management
	Collections
	Exception Handling
	Exception Messages
	Managing FdoPtr Behaviors

	Establishing a Connection
	Connection Semantics
	Establishing a Connection

	FDO Capabilities
	FDO Capabilities
	Introduction
	Provider Type
	Command
	Connection
	Expression
	Filter
	Geometry
	Raster
	Schema
	Expressible as Boolean
	Not Expressible as a Boolean

	Schema Management
	Schema Package
	Schema Mappings
	Schema Overrides
	Working with Schemas
	FDOFeatureClass
	FDOClass
	Non-Feature Class Issues
	Modifying Models
	Schema Element States
	Rollback Mechanism
	FDO XML Format
	Creating and Editing a GML Schema File
	Schema Management Examples

	Data Maintenance
	Data Maintenance Operations
	Inserting Values
	Updating Values
	Deleting Values

	Related Class Topics

	Performing Queries
	Creating a Query
	Query Example

	Long Transaction Processing
	What Is Long Transaction Processing?
	Supported Interfaces

	Filter and Expression Languages
	Filters
	Expressions
	Filter and Expression Text
	Language Issues
	Provider-Specific Constraints on Filter and Expression Text
	Filter Grammar
	Expression Grammar
	Filter and Expression Keywords
	Data Types
	Identifier
	Parameter
	String
	Integer
	Double
	DateTime

	Operators
	Special Character
	Geometry Value

	The Geometry API
	Introduction
	FGF and WKB
	FGF Binary Specification
	FGF Text
	Abstract and Concrete Classes
	Geometry Types
	Mapping Between Geometry and Geometric Types
	Spatial Context
	Specify Dimensionality When Creating Geometries Using String Specifications
	Inserting Geometry Values

	FDO Cookbook
	Introduction
	Recommendations
	Registry
	Connection
	Capabilities
	Data Store
	User Management
	Spatial Context
	Basic Schema Operations
	Insert Data
	Select Data
	Select Aggregate Data
	Delete Data
	Schema Overrides
	Xml Serialize/Deserialize
	C#

	Geometry
	Construction
	C# Namespaces
	C# Geometry Scaffolding Classes
	C# Geometries Constructed using IDirectPositionImpl
	C# Geometries Constructed Using Geometry Subcomponents
	C# Aggregate Geometries
	C# Geometries from Text Specifications

	Deconstruction

	OSGeo FDO Provider for ArcSDE
	What Is FDO Provider for ArcSDE?
	FDO Provider for ArcSDE Software Requirements
	Installed Components
	External Dependencies

	FDO Provider for ArcSDE Limitations
	ArcSDE Limitations
	Relative to ArcObjects API and ArcGIS Server API
	Curved Segments

	Locking and Versioning
	Table Creation
	Identity Row ID Column and Enable Row Locking
	Disable Row Locking and Enable Versioning

	FDO Provider for ArcSDE Connection
	Data Type Mappings
	Creating a Feature Schema
	Logical to Physical Schema Mapping
	Physical to Logical Schema Mapping
	FDO Provider for ArcSDE Capabilities

	OSGeo FDO Provider for MySQL
	What Is FDO Provider for MySQL?
	Logical to Physical Schema Mapping
	Physical to Logical Schema Mapping
	FDO Provider for MySQL Capabilities

	OSGeo FDO Provider for ODBC
	What Is FDO Provider for ODBC?
	Physical to Logical Schema Mappings
	FDO Provider for ODBC Capabilities

	OSGeo FDO Provider for SDF
	What Is FDO Provider for SDF?
	FDO Provider for SDF Capabilities

	OSGeo FDO Provider for SHP
	What Is FDO Provider for SHP?
	Creating SHP Files for the Logical to Physical Schema Mapping
	Creating SHP Files for the Physical to Logical Schema Mapping
	Logical to Physical Schema Mapping
	Physical to Logical Schema Mapping
	FDO Provider for SHP Capabilities

	OSGeo FDO Provider for SQL Server Spatial
	Logical to Physical Schema Mapping
	Physical to Logical Schema Mapping

	OSGeo FDO Provider for WFS
	What Is FDO Provider for WFS?
	FDO Provider for WFS Capabilities

	OSGeo FDO Provider for WMS
	What Is FDO Provider for WMS?
	FDO Provider for WMS Capabilities

	Index

