
MapGuide Open Source

M
ap
G
ui
de

O
pe
n
So

ur
ce

Developer’s Guide

March 2006

Copyright© 2006 Autodesk, Inc.
This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. You are free to: (i) copy, distribute, display and perform
the work; (ii) make derivative works; and (iii) make commercial use of the work, each under the conditions set forth in the license set forth at:
http://creativecommons.org/licenses/by-sa/2.5/legalcode. Notwithstanding the foregoing, you shall acquire no rights in, and the foregoing
license shall not apply to, any of Autodesk's or a third party's trademarks used in this document.
AUTODESK, INC., MAKES NO WARRANTY, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS, AND MAKES SUCH MATERIALS AVAILABLE
SOLELY ON AN "AS-IS" BASIS. IN NO EVENT SHALL AUTODESK, INC., BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF ACQUISITION OR USE OF THESE MATERIALS. THE SOLE AND
EXCLUSIVE LIABILITY TO AUTODESK, INC., REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE PURCHASE PRICE, IF ANY, OF
THE MATERIALS DESCRIBED HEREIN.

Trademarks
Autodesk, Autodesk Map, Autodesk MapGuide are registered trademarks of Autodesk, Inc., in the USA and/or other countries. DWF is a trademark
of Autodesk, Inc., in the USA and/or other countries. All other brand names, product names or trademarks belong to their respective holders.

Third Party Software Program Credits
Portions copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 by Cold Spring Harbor Laboratory. Funded under
Grant P41-RR02188 by the National Institutes of Health.
Portions copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 by Boutell.Com, Inc.
Portions relating to GD2 format copyright 1999, 2000, 2001, 2002, 2003, 2004 Philip Warner.
Portions relating to PNG copyright 1999, 2000, 2001, 2002, 2003, 2004 Greg Roelofs.
Portions relating to gdttf.c copyright 1999, 2000, 2001, 2002, 2003, 2004 John Ellson (ellson@graphviz.org).
Portions relating to gdft.c copyright 2001, 2002, 2003, 2004 John Ellson (ellson@graphviz.org).
Portions relating to JPEG and to color quantization copyright 2000, 2001, 2002, 2003, 2004, Doug Becker and copyright (C) 1994, 1995, 1996,
1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Thomas G. Lane.
This software is based in part on the work of the Independent JPEG Group.
Portions relating to GIF compression copyright 1989 by Jef Poskanzer and David Rowley, with modifications for thread safety by Thomas Boutell.
Portions relating to GIF decompression copyright 1990, 1991, 1993 by David Koblas, with modifications for thread safety by Thomas Boutell.
Portions relating to WBMP copyright 2000, 2001, 2002, 2003, 200 4Maurice Szmurlo and Johan Van den Brande.
Portions relating to GIF animations copyright 2004 Jaakko Hyvätti (jaakko.hyvatti@iki.fi)
This product includes PHP, freely available from http://www.php.net/
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
The Director General of the Geographic Survey Institute has issued the approval for the coordinates exchange numbered TKY2JGD for Japan.
Geodetic Datum 2000, also known as technical information No H1-N0.2 of the Geographic Survey Institute, to be installed and used within
this software product (Approval No.: 646 issued by GSI, April 8, 2002).
The OSTN97 coordinate transformation is © Crown Copyright 1997. All rights reserved.
The OSTN02 coordinate transformation is © Crown copyright 2002. All rights reserved.
The OSGM02 coordinate transformation is © Crown copyright 2002, © Ordnance Survey Ireland, 2002.
Portions of this software are copyright © 2005 The FreeType Project (www.freetype.org). All rights reserved.

1 2 3 4 5 6 7 8 9 10

Contents

Chapter 1 Introduction . 1
What This Guide Covers . 2
Essential Concepts . 2
Preparing to Run the Examples . 2

Recommended Directory Structure 3
Hello, Map – Basic Map Information . 3

Web Layouts and MapGuide Server Pages 3
MapGuide Page Flow . 4
Example Code . 5
Running the Example . 7
How This Page Works . 7

Understanding Viewer Frames . 8
Interactions Between Frames . 11

MapGuide Viewer API . 11
Calling the Viewer API from the Task Pane 12
Calling the Viewer API from the Script Frame 13
Calling the Viewer API with an Invoke Script

Command . 13
MapGuide Web API . 14

Embedding a Viewer in Your Own Page 14
Session Management . 14

Resources and Repositories . 16
Library and Session . 17

iii

Maps . 17
Understanding Services . 18

Chapter 2 Interacting With Layers . 21
Overview of Layers . 22

Basic Layer Properties . 22
Layer Groups . 22

Base Layer Groups . 23
Layer Style . 24
Layer Visibility . 24

Example: Actual Visibility 24
Refresh and Zoom . 25

Example . 25
Enumerating Map Layers . 26

Example . 26
Manipulating Layers . 27

Changing Basic Properties . 27
Example . 27

Changing Visibility . 29

Chapter 3 Working With Feature Data . 31
Overview of Features . 32
Querying Feature Data . 33

Feature Readers . 33
Selecting with the Web API . 33

Basic Filters . 34
Spatial Filters . 35

Example: Listing Selected Features 37
Active Selections . 40

Selecting with the Viewer . 40
Working With the Active Selection 41

Example: Listing Selected Parcels (AJAX Viewer) 42
Example: Listing Selected Parcels (DWF Viewer) 44

Setting the Active Selection With the Web API 45
Example: Setting the Active Selection 45

Chapter 4 Modifying Maps and Layers . 51
Introduction . 52
Adding An Existing Layer To A Map 52
Creating Layers By Modifying XML . 52
Another Way To Create Layers . 55

Example - Creating A Layer That Uses Area Rules 59
Example - Using Line Rules . 60
Example - Using Point Rules . 61

iv | Contents

Adding Layers To A Map . 63
Making Changes Permanent . 66

Index . 67

Contents | v

Introduction

In this chapter

■ What This Guide Covers

■ Essential Concepts

■ Preparing to Run the Examples

■ Hello, Map – Basic Map
Information

■ Understanding Viewer Frames

■ Interactions Between Frames

■ Embedding a Viewer in Your Own
Page

■ Resources and Repositories

■ Understanding Services

1

1

What This Guide Covers
This guide describes how to use the MapGuide Open Source Web API.

It assumes you have read the MapGuide Getting Started guide and are familiar
with using Autodesk® MapGuide Studio. Some examples also assume that you
have installed the sample data and sample application supplied with
MapGuide.

This guide provides a high-level overview of the APIs. More detailed
information is provided in the on-line MapGuide Web API Reference and
MapGuide Viewer API Reference.

Essential Concepts
Refer to the MapGuide Getting Started guide for details about the MapGuide
architecture and components. It is important to understand the relationship
between a MapGuide Viewer, a MapGuide Web application, and the MapGuide
site. It is also important to understand resources and repositories.

Web applications reside on the Web Server. They are normally executed by
requests from a MapGuide Viewer. They can in turn communicate with the
MapGuide site and send data back to the Viewer.

When you define a web layout, using Studio or some other method, you also
define toolbar and menu commands. These can be standard pre-defined Viewer
commands like pan, zoom, and refresh, or they can be custom commands.
Custom commands are a way of extending MapGuide to interact with your
mapping data. The custom commands are HTML pages, generated on the
server using PHP, ASP.NET, or Java. These languages can use the Web API to
retrieve, manipulate, and update mapping data.

Many custom commands run in the task area, a section of the Viewer that is
designed for user input/output. For more details about the task area and how
it integrates with the rest of the Viewer, see Understanding Viewer Frames
(page 8).

Preparing to Run the Examples
This guide includes many examples. Some are complete, while others are
partial. To run any of the partial samples, you must add standard initialization
and error-checking steps. Refer to any of the complete examples for details.

2 | Chapter 1 Introduction

Recommended Directory Structure

When you install MapGuide Web Extensions, it creates a www directory to
act as a virtual directory for your web server. Within this directory are other
directories for MapGuide administration, the map agent, and the Viewers.

If you install the PHP sample application, it is placed in the
www\phpviewersample directory.

For the examples in this guide, you should create a www\devguide directory.
Use this for any examples and tests you write.

Hello, Map – Basic Map Information

NOTE The Web API supports .NET, Java, and PHP. For simplicity, all the examples
in this guide use PHP.

To run the examples on a Linux installation, change any Windows-specific
file paths to corresponding Linux paths.

This first sample MapGuide page displays some basic information about a
map. It does not do any complicated processing. Its purpose is to illustrate
the steps required to create a MapGuide page and have it connect to a Viewer
on one side and the MapGuide site on the other.

Web Layouts and MapGuide Server Pages

A MapGuide Server Page (MSP) is any PHP, ASP.NET, or JSP page that makes use
of the MapGuide Web API. MSPs are typically invoked by the MapGuide
Viewer or browser and when processed result in HTML pages that are loaded
into a MapGuide Viewer or browser frame. This is the form that will be used
for most examples in this guide. It is possible, however, to create MSPs that
do not return HTML or interact with the Viewer at all. These can be used for
creating web services as a back-end to another mapping client or for batch
processing of your data.

Creating an MSP requires initial setup, to make the proper connections between
the Viewer, the page, and the MapGuide site. Much of this can be done using
Studio. Refer to the Studio Help for details.

Recommended Directory Structure | 3

One part of the initial setup is creating a web layout, which defines the
appearance and available functions for the Viewer. When you define a web
layout, you assign it a resource name that describes its location in the
repository. The full resource name looks something like this:

Library://Samples/Sheboygan/Layouts/SheboyganPhp.WebLayout

When you open the web layout using a browser with either the AJAX Viewer
or the DWF Viewer, the resource name is passed as part of the Viewer URL.
Special characters in the resource name are URL-encoded, so the full URL
would look something like this, (with line breaks removed):

http://localhost/mapguide/mapviewerajax/

?WEBLAYOUT=Library%3a%2f%2fSamples%2fSheboygan%2fLayouts%2f

SheboyganPhp.WebLayout

Part of the web layout defines commands and the toolbars and menus that
contain the commands. These commands can be built-in commands, or they
can be URLs to custom MSPs. The custom MSPs are what make up your
application.

To create a new MSP and make it available to a Viewer, add a command to
the web layout. Set the command type to Invoke URL. Set the URL of the
command to the URL of your page, and add the command to the Task Bar
Menu.

It is possible to add custom commands to other menus as well. For most of
the examples in this guide, however, the commands will be part of the Task
Bar Menu. Output from an MSP normally appears in the task pane, though
you may direct it to another frame or new window if desired.

MapGuide Page Flow

Most MSPs follow a similar processing flow. First, they create a connection
with the site server. Then they open connections to any needed site services.
The exact services required depend on the MSP function. For example, a page
that deals with map feature data requires a feature service connection.

Once the site connection and any other service connections are open, the
page can use MapGuide Web API calls to retrieve and process data. Output
goes to the task pane or back to the Viewer. See MapGuide Viewer API (page
11) for details about sending data to the Viewer.

When a user first connects to a MapGuide site, the site creates a session for
that user. If you use a MapGuide Viewer to display your map, the session is
created automatically. This also generates a unique session ID, which the

4 | Chapter 1 Introduction

Viewer uses to manage the run-time map state. This keeps the state consistent
between the viewer and the server across multiple HTTP requests.

NOTE MapGuide pages written in PHP require one additional step because PHP
does not support enumerations compiled into extensions. To deal with this
limitation, PHP Web Extension pages must include constants.php, which is in
the mapviewerphp folder. This is not required for ASP.NET or JSP pages.

Example Code

This sample illustrates basic page structure. It is designed to be called as a task
from a Viewer. It connects to a MapGuide server and displays the map name
and spatial reference system for the map currently being displayed in the
Viewer. See Running the Example (page 7) for details about how to install
and run this page.

It is also possible to embed a Viewer in your own page, so you can supply your
own logo, page header information, or authorization. See Embedding a Viewer
in Your Own Page (page 14) for details.

NOTE The following contains complete source for the page. Most of the examples
in this guide will only contain excerpts of the page source. The outer HTML and
the standard initialization steps will not be repeated in most cases.

Example Code | 5

<html>

<head><title>Hello, map</title></head>

<body>

<p>

<?php

// Define some common locations

$installDir =

'C:\Program Files\MapGuideOpenSource\\';

$extensionsDir = $installDir . 'WebServerExtensions\www\\';

$viewerDir = $extensionsDir . 'mapviewerphp\\';

// constants.php is required to set some enumerations

// for PHP. The same step is not required for .NET

// or Java applications.

include $viewerDir . 'constants.php';

try

{

// Get the session information passed from the viewer.

$mgSessionId = ($_SERVER['REQUEST_METHOD'] == "POST")

? $_POST['SESSION']: $_GET['SESSION'];

$mgMapName = ($_SERVER['REQUEST_METHOD'] == "POST")

? $_POST['MAPNAME']: $_GET['MAPNAME'];

// Basic initialization needs to be done every time.

MgInitializeWebTier("$extensionsDir\webconfig.ini");

// Get the user information using the session id,

// and set up a connection to the site server.

$userInfo = new MgUserInformation($mgSessionId);

$siteConnection = new MgSiteConnection();

$siteConnection->Open($userInfo);

// Get an instance of the required service(s).

$resourceService = $siteConnection->

CreateService(MgServiceType::ResourceService);

// Display the spatial reference system used for the map.

$map = new MgMap();

$map->Open($resourceService, $mgMapName);

$srs = $map->GetMapSRS();

echo 'Map ' . $map->GetName() .

' uses this reference system:
' . $srs;

}

catch (MgException $e)

{

echo "ERROR: " . $e->GetMessage() . "
";

echo $e->GetStackTrace() . "
";

}

6 | Chapter 1 Introduction

?>

</p>

</body>

</html>

Running the Example

To run the example, perform the following steps:

1 Save it where it is accessible by your web server.

For this example, name it hellomap.php, and save it in the www\devguide
directory.

2 Using Studio, create or modify a web layout. Create a new command.
Name the command Hello Map. Set the command type to Invoke URL.
Set the command URL to the URL of hellomap.php.

../devguide/hellomap.php

3 Add the command to the Task Menu of the web layout.

4 Open a web browser to the URL of the web layout. The URL is available
when you edit the layout using Studio. Use either the DWF Viewer or the
AJAX Viewer.

5 Select Hello Map from the task list. Click Tasks (at the top right of the
Viewer windows), and select Hello Map.

The task pane displays basic information about the map.

How This Page Works

This example page performs the following operations:

1 Get session information.

When you first go to the URL containing the web layout, the Viewer
initiates a new session. It prompts for a user id and password, and uses
these to validate with the site server. If the user id and password are valid,
the site server creates a session and sends the session id back to the viewer.

The Viewer passes the session information every time it sends a request
to a MapGuide page. The pages use this information to re-establish a
session.

Running the Example | 7

2 Perform basic initialization.

The webconfig.ini file contains parameters required to connect to the
site server, including the IP address and port numbers to use for
communication. MgInitializeWebTier() reads the file and gets the
necessary values to find the site server and create a connection.

3 Get user information.

The site server saves the user credentials along with other session
information. These credentials must be supplied when the user first
connects to the site. At that time, the Viewer authenticates the user and
creates a new session using the credentials. Using the session ID, the
pages can get an encrypted copy of the user credentials that can be used
for validation.

4 Create a site connection.

Any MapGuide pages require a connection to a site server, which manages
the repository and site services.

5 Create a connection to a resource service.

Access to resources is handled by a resource service. In this case, the MSP
needs a resource service in order to retrieve information about the map
resource.

You may need to create connections to other services, depending on the
needs of your application.

6 Retrieve map details.

The map name is also passed by the viewer to the MapGuide page. Use
this name to open a particular map resource with the resource service.
Once the map is open you can get other information. This example
displays the spatial reference system used by the map, but you can also
get more complex information about the layers that make up the map.

Understanding Viewer Frames
The
MapGuide Viewers

8 | Chapter 1 Introduction

use HTML frames to divide the viewer area. Refer to the diagram for the
locations of the following frames and frame sets:

DescriptionName

Unnamed. Contains all the Viewer frames. This can be wrapped
by an outer frame so you can embed the Viewer in your own
site..

Frame set containing the tool bar, map area, form frame, and
script frame.

maparea

Frame containing the tool bar. Add new commands to the tool
bar by modifying the web layout using Studio.

tbFrame

Frame containing the map data. This includes the map display
and the layers and properties palettes.

mapFrame

Hidden frame that can be used to generate HTTP POST requests
for sending data to the server.

formFrame

Hidden frame that can be used for executing client-side
JavaScript.

scriptFrame

Frame set containing the task bar and the task frame.taskArea

Frame containing the task bar.taskBar

Frame used to hold the task list frame and the task pane frame.taskFrame

Frame used for displaying the task list. This is normally hidden,
and is shown when a user clicks the task list button in the task

taskListFrame

bar. Add new commands to the task list by modifying the web
layout.

Frame used for displaying and executing MapGuide pages.taskPaneFrame

Frame containing the status bar.sbFrame

Understanding Viewer Frames | 9

(Your frameset) (optional)
(Your banner) (optional)

(2-row frameset)
(2-column frameset)

(hidden frame)
(hidden frame)

(status bar)

(tool bar) (task bar)
mapArea
tbFrame

mapFrame taskFrame

taskListFrame

taskPaneFrame

taskBar
taskArea

formFrame
scriptFrame

sbFrame

/mapguide/mapviewerajax/?
SESSION=sessionid&WEBLAYOUT=weblayout

Viewer Frames

Most custom MSPs display in the task pane. When you create a custom
command in a web layout and add it to the task menu, it will appear in the
task list that displays when a user clicks the Tasks button.

NOTE You can customize the web layout so some of the frames do not display.
For example, if you hide the task bar and task frame, then the entire task area does
not display.

10 | Chapter 1 Introduction

Interactions Between Frames
A MapGuide page may need to perform three types of interactions:

■ User input and output

■ Commands to manipulate the Viewer

■ Communication with the site server

User input and output is done directly through the HTML code in the page
itself. This can include any standard HTML interaction, like hyperlinks and
form input.

Viewer commands are done with the MapGuide Viewer API, which is a
collection of JavaScript commands available in the Viewer frames. See
MapGuide Viewer API (page 11) for details.

Communication with the site server is done using the MapGuide Web API.

MapGuide Viewer API

The MapGuide Viewer API is a set of JavaScript functions used to control the
Viewer. Many of the Viewer frames contain embedded JavaScript functions
that can be called from other locations. For full details about the available
functions, refer to the online MapGuide Viewer API Reference.

To execute any of the Viewer API functions, call them from JavaScript
embedded in a page. There are three common techniques for this:

■ Execute the JavaScript call when the MapGuide page loads in the task pane.
You can perfom all the necessary processing in advance of loading the
page, then emit a function containing the correct parameters. Use this
technique when you want the Viewer to change when the page loads.

■ Execute the JavaScript inside the script frame. Use this technique when
you want the Viewer to change as a result of an action in the MapGuide
page, without reloading the page.

■ Call the Viewer API during client-side interaction with the page or using
the Invoke Script command type in the web layout. Use this technique
when you want to call the API directly from the tool bar.

Interactions Between Frames | 11

NOTE It is important to know the relationships between the frames. Pages in the
task area must refer to parent.parent.mapFrame in order to traverse the frame
hierarchy properly. However, if the same function executes from the script frame
or the task bar, it only needs to refer to parent.mapFrame, because the script
frame and the map frame are part of the same frame set.

Many Viewer API calls will generate requests to the site server, either to refresh
data in the Viewer or to notify the site server of a change in Viewer state.
These requests are generated automatically.

Calling the Viewer API from the Task Pane

Use this technique when you want the Viewer API calls to be made when the
page loads. For example, if you have a task in the task list that zooms the map
to a pre-defined location, then you do not need any user input. The Viewer
should zoom as soon as the page loads.

The map frame contains a JavaScript function to center the map to a given
coordinate at a given map scale. To call this function from a page loading in
the task pane, create a function that will be executed when the onLoad event
occurs. The following is a simple example. If you add this to the task list and
select the task, the displayed map will reposition to the given location.

<html>

<head>

<title>Viewer Sample Application - Zoom</title>

</head>

<script language="javascript">

function OnPageLoad()

{

parent.parent.ZoomToView(-87.7116768,

43.7766789973, 5000, true);

}

</script>

<body onLoad="OnPageLoad()">

<h1>Zooming...</h1>

</body>

</html>

12 | Chapter 1 Introduction

Calling the Viewer API from the Script Frame

Use this technique when you want the Viewer API calls to be made as a result
of an action in the calling page, but you do not want to reload the page. For
example, you may have a page that generates a list of locations and you would
like the user to be able to jump directly to any location, while leaving the list
still available in the task pane.

In this case, your page can load another page in the hidden script frame, using
target="scriptFrame" as part of the <a> tag. This requires that you create a
separate page to load in the script frame and that you pass the necessary
parameters when the page loads.

For example, the sample application includes a page named gotopoint.php.
This is designed to be run in the script frame. The <body> element is empty,
so the page does not produce any output. Instead, it emits a JavaScript function
to execute when the page loads. This function calls the ZoomToView() function
in the Viewer API.

To execute gotopoint.php from another page, create a hyperlink that passes
the coordinates and zoom amount as HTTP GET parameters. Set
target="scriptFrame". When a user clicks the link, gotopoint.php is loaded
in the script frame, but the calling page does not change. For example, the
following could be included as part of a page in the task pane:

<a href="gotopoint.php?X=-87.7116768&Y=43.7766789973&Scale=5000"

target="scriptFrame">Position map

Calling the Viewer API with an Invoke Script
Command

Use this technique when you want to call the API directly from the tool bar.

For example, you may want to create a tool bar button that zooms and
positions the map to show a particular location. In the web layout, create a
command of type Invoke Script. Enter the API call as the script to invoke:

ZoomToView(-87.7116768, 43.7766789973, 5000, true);

When a user clicks the button, the map view will reposition to the location.

Commands of type Invoke Script always execute in the context of the main
frame. This means that all main frame functions are available. To execute a

MapGuide Viewer API | 13

function in another frame, use the frame name as part of the function name.
For example, formFrame.Submit().

To add your own JavaScript functions, you can embed a Viewer in another
page. See Embedding a Viewer in Your Own Page (page 14) for details. In this
case, any JavaScript functions defined in the outer page are available to scripts
as parent.functionName(), where functionName is the name of your
function.

MapGuide Web API

The MapGuide Web API provides functions for geospatial processing using
your map data. These functions may be executed in the context of the Web
Server. If they are service APIs then they are executed in the context of the
Site Server.

NOTE When you make calls to the Web API, this may result in changes to data in
the repository. These changes are not automatically sent to the Viewer. You must
also call the Viewer API function refresh().

Embedding a Viewer in Your Own Page
The simplest way to incorporate a MapGuide Viewer into your own site is to
create a frame set that contains a frame for your own page layout and a frame
for the Viewer. In the sample application, dwfviewersample.php and
ajaxviewersample.php show this technique. They both create a frame set where
the top frame in the set contains a site-specific page header, and the bottom
frame in the set contains the embedded Viewer.

Session Management

In most cases, your application can let the MapGuide Viewer manage the
session state automatically. When the Viewer first loads it creates a session,
and it passes the session ID every time it loads an application page.

At times, though, you may want to create the session yourself, in the custom
HTML surrounding the Viewer. When you do this, then the session
information is available to the surrounding pages, instead of being just
available to the Viewer.

14 | Chapter 1 Introduction

You can also create your own session when you want a custom login page or
when you want to allow anonymous access without prompting for a user id
and password.

For example, you may want to hide the tool bar and task frame completely,
and provide all the MapGuide functions directly through the HTML in your
custom page. In order to do this, your HTML must pass the session ID to any
pages it loads.

To create a new session, authenticate with a user id and password, then use
this to create a site connection and new session, as in the following example.
Note that this example uses some files from the sample application. You will
either need to copy the files to the devguide directory or run this example
from the phpviewersample directory.

Session Management | 15

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"

"http://www.w3.org/TR/html4/frameset.dtd">

<?php

include 'AppConstants.php';

MgInitializeWebTier ($configFilePath);

$webLayout =

"Library://Samples/Sheboygan/Layouts/SheboyganPhp.WebLayout";

$user = 'Administrator';

$password = 'admin';

$userInfo = new MgUserInformation($user, $password);

$site = new MgSite();

$site->Open($userInfo);

$sessionId = $site->CreateSession();

?>

<html>

<head>

<title>Viewer Sample Application</title>

<meta content="text/html; charset=utf-8"

http-equiv="Content-Type">

<meta http-equiv="content-script-type"

content="text/javascript" />

<meta http-equiv="content-style-type" content="text/css" />

<link href="styles/globalStyles.css"

rel="stylesheet" type="text/css">

</head>

<frameset rows="110,*" frameborder="NO" border="0"

framespacing="0">

<frame src="Title.php?AppName=HTML" name="TitleFrame"

scrolling="NO" noresize>

<frame src="/mapguide/mapviewerphp/ajaxviewer.php?

SESSION=<?= $sessionId ?>&WEBLAYOUT=<?= $webLayout ?>"

name="ViewerFrame">

</frameset>

</html>

Resources and Repositories
A MapGuide repository is a database that stores and manages the data for the
site. The repository stores all data except data that is stored in external
databases. Data stored in a repository is a resource.

16 | Chapter 1 Introduction

Types of data stored in the repository:

■ Feature data from SHP and SDF files

■ Drawing data from DWF files

■ Map symbols

■ Layer definitions

■ Map definitions

■ Web layouts

■ Connections to feature sources, including database credentials

Library and Session

Persistent data that is available to all users is stored in the Library repository.
This is the repository that changes when you use Studio to create a web layout.

In addition, each session has its own repository, which stores the run-time
map state. It can also be used to store other data, like temporary layers that
apply only to an individual session. For example, a temporary layer might be
used to overlay map symbols indicating places of interest.

Data in a session repository is destroyed when the session ends.

A resource identifier for a resource in the Library will always begin with
Library://. For example:

Library://Samples/Sheboygan/Layouts/SheboyganPhp.WebLayout

A resource identifier for a session resource will always begin with Session:,
followed by the session id. For example:

Session:70ea89fe-0000-1000-8000-005056c00008_en//layer.LayerDefinition

Maps

A map (MgMap object) is created from a map definition resource. The map
definition contains basic information about the map, including things like

■ the coordinate system used in the map

■ the initial map extents

Library and Session | 17

■ references to the layer definitions for layers in the map

When the MgMap object is created, it is initialized with data from the map
definition. As a user interacts with the map, the MgMap may change, but the
map definition does not.

The map is saved in the session repository so it is available to all pages in the
same session. You cannot save a map in the library repository.

Map creation is handled by the Viewers. When a Viewer first loads, it creates
a map in the session repository. The map name is taken from the map
definition name. For example, if a web layout references a map definition
named Sheboygan.MapDefinition, then the Viewer will create a map named
Sheboygan.Map.

If your application does not use a Viewer, you can create the map and store
it in the repository yourself. To do this, your page must

■ Create an MgMap object.

■ Initialize the MgMap object from a map definition.

■ Assign a name to the MgMap object.

■ Save the map in the session repository.

For example, the following section of code creates an MgMap object named
Sheboygan.Map, based on Sheboygan.MapDefinition.

$mapDefId = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Maps/Sheboygan.MapDefinition");

$map = new MgMap();

$mapName = $mapDefId->GetName();

$map->Create($resourceService, $mapDefId, $mapName);

$mapId = new MgResourceIdentifier(

"Session:$sessionId//$mapName." . MgResourceType::Map);

$map->Save($resourceService, $mapId);

Understanding Services
The MapGuide site performs many different functions. These can be all done
by a single server, or you may balance the load across multiple servers. Some
essential functions must execute on the site server, while other functions may
execute on support servers.

18 | Chapter 1 Introduction

A service performs a particular set of related functions. For example, a resource
service manages data in the repository, a feature service provides access to
feature data sources, and a mapping service provides visualization and plotting
functions.

Before a page can use a service, it must open a site connection and create an
instance of the necessary service type. The following example creates a resource
service and a feature service:

$userInfo = new MgUserInformation($mgSessionId);

$siteConnection = new MgSiteConnection();

$siteConnection->Open($userInfo);

$resourceService = $siteConnection->

CreateService(MgServiceType::ResourceService);

$featureService = $siteConnection->

CreateService(MgServiceType::FeatureService);

Understanding Services | 19

Interacting With Layers

In this chapter

■ Overview of Layers

■ Refresh and Zoom

■ Enumerating Map Layers

■ Manipulating Layers

2

21

Overview of Layers
Layers represent vector data, raster data, and drawing data in a map. Each type
of layer has unique characteristics.

NOTE The word layer has different meanings in different contexts. A layer can
refer to the layer definition in the resource repository, and it can also refer to the
map layer. For the purposes of the Web Tier, a layer refers to a map layer, and a
layer definition refers to the layer definition in the resource repository.

Basic Layer Properties

A map contains one or more layers (MgLayer objects) that are rendered to
create a composite image. Each layer has properties that determine how it
displays in the map and map legend. Some of the properties are:

■ Layer name: A unique identifier

■ Legend label: The label for the layer as it appears in the map legend.

■ Visibility: whether the layer should be displayed in the map. Note that
actual visibility is dependent on more than just the visibility setting for a
layer. See Layer Visibility (page 24) for further details.

■ Selectable: Whether features in the layer are selectable. This only applies
to layers containing feature data.

The MgMap::GetLayers() method returns an MgLayerCollection object that
contains all the layers in the map. The MgLayerCollection::GetItem() method
returns an individual MgLayer object, by either index number in the collection
or layer name.

Layers in the collection are sorted by drawing order, with the top layers at the
beginning of the collection. For example, using PHP syntax, if $layers is a
collection containing the layers in a map, then $layers->GetItem(0) returns
the top-most layer.

Layer Groups

Layers can be optionally grouped into layer groups. Layers in the same group
are displayed together in the legend.

22 | Chapter 2 Interacting With Layers

The visibility for all layers in a group can be set at the group level. If the group
visibility is turned off then none of the layers in the group will be visible,
regardless of their individual visibility settings. If the group visibility is turned
on, then individual layers within the group can be made visible or not visible
separately.

Layer groups can be nested so a group can contain other groups. This provides
a finer level of control for handling layer visibility or legend groups.

The MgMap::GetLayerGroups() method returns an MgLayerGroupCollection
object that contains all the layer groups in the map.

Each layer group in a map must have a unique name, even if it is nested within
another group.

Base Layer Groups

The AJAX viewer can use base layer groups to optimize image rendering times.
Layers in a base layer group are rendered together to generate a single raster
image that can be sent to the viewer. The image is divided into tiles so only
the required tiles need to be rendered and sent, instead of the entire image.
Tiles are cached on the server; if a tile already exists in the cache it does not
need to be rendered before being sent.

Each base layer group has a series of pre-defined scales that are used for
rendering. When a request is made to view a portion of the map at a given
scale, the AJAX viewer renders the tiles at the pre-defined scale that is closest
to the requested map view scale.

Layers within a base layer group are rendered together. Visibility settings for
individual layers are ignored and the visibility setting for the group is used
instead.

Layers above the base layers will generally be vector layers with transparent
backgrounds. This makes the images small and relatively quick to load in the
viewer.

You may have more than one base layer group. Lower layers will be hidden
by higher layers unless the higher layers have transparent areas or have their
visibility turned off.

NOTE A layer can only belong to one group at a time. It cannot be part of both
a base layer group and a regular group.

Layer Groups | 23

Layer Style

The data source information and style information for a layer controls how
the layer looks when it displayed on a map. This is stored in the layer definition
in the repository. To change any of the data source or style information,
modify the layer definition.

Layer definitions can be modified using Autodesk MapGuide Studio. They can
also be created and modified dynamically using the Web Extensions API. See
Modifying Maps and Layers (page 51) for details.

Layer Visibility

Whether a layer is visible in a given map depends on three criteria:

■ The visibility setting for the layer

■ The visibility settings for any groups that contain the layer

■ The map view scale and the layer definition for that view scale

In order for a layer to be visible, its layer visibility must be on, the visibility
for any group containing the layer must be on, and the layer must have a style
setting defined for the current map view scale.

Example:Actual Visibility

For example, assume that there is a layer named Roads that is part of the layer
group Transportation. The layer has view style defined for the scale ranges
0–10000 and 10000–24000.

The following table shows some possible settings of the various visibility and
view scale settings, and their effect on the actual layer visibility.

Actual VisibilityView ScaleGroup VisibilityLayer Visibility

On10000OnOn

Off25000OnOn

24 | Chapter 2 Interacting With Layers

Actual VisibilityView ScaleGroup VisibilityLayer Visibility

Off10000OffOn

Off10000OnOff

Refresh and Zoom
The default scale and center point of a map are set as part of the map
definition. When a map first displays, the default values are used. As users
change the view, the changes are not saved back to the map definition, but
are used temporarily as part of the session.

JavaScript API calls on the viewer refresh the map and set the view scale and
map center. See MapGuide Viewer API (page 11) for details about ways to call
JavaScript functions.

To refresh a map, execute the following JavaScript function:

parent.Refresh();

To change the center point and map view scale, execute the following
JavaScript function:

ZoomToView(XCoordinate, YCoordinate, MapScale, Refresh);

Example

The sample application contains a file named gotopoint.php that is designed
to run in the script frame. The essential parts of gotopoint.php are:

Refresh and Zoom | 25

<script language="javascript">

function OnPageLoad()

{

 parent.ZoomToView(<?= $_GET['X'] ?>,

 <?= $_GET['Y'] ?>,

 <?= $_GET['Scale'] ?>, true);

}

</script>

<body onLoad="OnPageLoad()">

</body>

To execute gotopoint.php from the task frame, insert code similar to the
following:

$xLocation = -87.7116768; // Or calculate values

$yLocation = 43.7766789973;

$mapScale = 2000;

echo "<p><a href=\"gotopoint.php?" .

"X=$xLocation&Y=$yLocation&Scale=$mapScale\"" .

"target=\"scriptFrame\">Click to position map</p>";

Enumerating Map Layers
Map layers are contained within an MgMap object. To list the layers in a map,
use the MgMap::GetLayers() method. This returns an MgLayerCollection
object.

To retrieve a single layer, use the MgLayerCollection::GetItem method with
either an integer index or a layer name. The layer name is the name as defined
in the map, not the name of the layer definition in the repository.

For example:

$layer = $layers->GetItem('Roads');

Example

The following example lists the layers in a map, along with an indicator of
the layer visibility setting.

26 | Chapter 2 Interacting With Layers

$layers = $map->GetLayers(); // Get layer collection

echo "<p>Layers:
";

$count = $layers->GetCount();

for ($i = 0; $i < $count; $i++)

{

$layer = $layers->GetItem($i);

echo $layer->GetName() . ' (' .

($layer->GetVisible() ? 'on' : 'off') . ')
';

}

echo '</p>';

Manipulating Layers
Modifying basic layer properties and changing layer visibility settings can be
done directly using API calls. More complex manipulation requires modifying
layer resources in the repository. For details, see Modifying Maps and Layers
(page 51).

Changing Basic Properties

To query or change any of the basic layer properties like name, label, or group,
use the MgLayer::GetProperty() and MgLayer::SetProperty() methods,
where Property is one of the layer properties. You must save and refresh the
map for the changes to take effect.

Example

The following example toggles the name of the Roads layer between Roads
and Streets.

Manipulating Layers | 27

$awSessionId = ($_SERVER['REQUEST_METHOD'] == "POST")?

 $_POST['SESSION']: $_GET['SESSION'];

try

{

 // Initialize the Web Extensions and connect to the Server using

 // the Web Extensions session identifier stored in PHP

 // session state.

 // $configFilePath is the path to the web server configuration

 MgInitializeWebTier ($configFilePath);

 $userInfo = new MgUserInformation($awSessionId);

 $siteConnection = new MgSiteConnection();

 $siteConnection->Open($userInfo);

 $resourceService =

 $siteConnection->CreateService(MgServiceType::ResourceService);

 $map = new MgMap();

 $map->Open($resourceService, 'Sheboygan');

 $layers = $map->GetLayers();

 $roadLayer = $layers->GetItem('Roads');

 $roadLabel = $roadLayer->GetLegendLabel();

 if ($roadLabel == 'Roads')

 $newLabel = 'Streets';

 else

 $newLabel = 'Roads';

 $roadLayer->SetLegendLabel($newLabel);

 // You must save the updated map or the

 // changes will not be applied

 // Also be sure to refresh the map on page load.

 $map->Save($resourceService);

 echo '<p>Layer label has been changed.</p>';

}

catch (MgLayerNotFoundException $e)

{

 echo '<p>Layer not found</p>';

28 | Chapter 2 Interacting With Layers

}

catch (MgObjectNotFoundException $e)

{

echo '<p>Layer not found</p>';

}

catch (MgException $e)

{

echo $e->GetMessage();

echo $e->GetDetails();

}

Changing Visibility

To query the actual layer visibility, use the MgLayer::IsVisible() method.
There is no method to set actual visibility because it depends on other visibility
settings.

To query the visibility setting for a layer, use the MgLayer::GetVisible()
method. To change the visibility setting for a layer, use the
MgLayer::SetVisible() method.

To query the visibility setting for a layer group, use the MgGroup::GetVisible()
method. To change the visibility setting for a layer group, use the
MgGroup::SetVisible() method.

To change the layer visibility for a given view scale, modify the layer resource
and save it back to the repository. See Modifying Maps and Layers (page 51)
for details.

The following example turns on the visibility for the Roads layer. Changing
Basic Properties (page 27).

$layers = $map->GetLayers();

$roadsLayer = $layers->GetItem('Roads');

$roadsLayer->SetVisible(True);

NOTE Changing the visibility will have no effect until the map is saved and
refreshed.

Changing Visibility | 29

Working With Feature
Data

In this chapter

■ Overview of Features

■ Querying Feature Data

■ Active Selections

3

31

Overview of Features
Understanding features is fundamental to being able to use the MapGuide
Web API. Nearly every application will need to interact with feature data in
one form or another.

Features are map objects representing items like roads (polylines), lakes
(polygons), or locations (points).

A feature source is a resource that contains a set of related features, stored in a
file or database. Some common feature source types are SDF files, SHP files,
or data in a spatial database.

For example, you may have a feature source that contains data for roads.
Feature sources can be stored in the library repository or in a session repository.
A feature source identifier describes a complete path in the repository. For
example,

Library://Samples/Sheboygan/Data/RoadCenterLines.FeatureSource

Within a single feature source there may be one or more feature classes. A
feature class describes a subset of the features in the feature source. In many
cases, there is one feature class for each feature source. For example, there may
be a Roads feature class in the RoadCenterLines feature source.

A feature class contains one or more features. Each feature has a geometry
that defines the spatial representation of the feature. Features will also generally
have one or more properties that provide additional information. For example,
a feature class containing road data may have properties for the road name
and the number of lanes. Feature properties can be of different types, like
strings, integers, and floating point numbers. Possible types are defined in the
class MgPropertyType.

In some cases, a feature property will be another feature. For example, a Roads
feature might have a Sidewalk feature as one of its properties.

A map layer may contain the features from a feature class. The features are
rendered using the feature geometry.

The Web API Feature Service provides functions for querying and updating
feature data.

32 | Chapter 3 Working With Feature Data

Querying Feature Data
In order to work with feature data, you must first select the features you are
interested in. This can be done with the Viewer or through Web API calls.

Feature Readers

A feature reader, represented by an MgFeatureReader object, is used to iterate
through a list of features. Typically, the feature reader is created by selecting
features from a feature source.

To create a feature reader, use the MgFeatureService::SelectFeatures()
method. See Selecting with the Web API (page 33) for details about selection.

To process the features in a feature reader, use the
MgFeatureReader::ReadNext() method. You must call this method before
being able to read the first feature. Continue calling the method to process
the rest of the features.

The MgFeatureReader::GetPropertyCount() method returns the number of
properties available for the current feature. When you know the name and
type of the feature property, call one of the
MgFeatureReader::GetPropertyType() methods (where PropertyType
represents one of the available types) to retrieve the value. Otherwise, call
MgFeatureReader::GetPropertyName() and
MgFeatureReader::GetPropertyType() before retrieving the value.

Selecting with the Web API

Selections can be created programatically with the Web API. This is done by
querying data in a feature source, creating a feature reader that contains the
features, then converting the feature reader to a selection (MgSelection object).

To create a feature reader, apply a selection filter to a feature class in the feature
source. A selection filter can be a basic filter, a spatial filter, or a combination
of the two. The filter is stored in an MgFeatureQueryOptions object.

Basic filters are used to select features based on the values of feature properties.
For example, you could use a basic filter to select all roads that have four or
more lanes.

Querying Feature Data | 33

Spatial filters are used to select features based on their geometry. For example,
you could use a spatial filter to select all roads that intersect a certain area.

Basic Filters

Basic filters perform logical tests of feature properties. You can construct
complex queries by combining expressions. Expressions use the comparison
operators below:

MeaningOperator

Equality=

Not equal<>

Less than<

Less than or equal to<=

Greater than>

Greater than or equal to>=

Used for string comparisons. The “%” wildcard represents
any sequence of 0 or more characters. The “_” wildcard

LIKE

represents any single character. For example, “LIKE
Schmitt%” will search for any names beginning with
“Schmitt”.

The comparison operators can be used with numeric or string properties,
except for the LIKE operator, which can only be used with string properties.

Combine or modify expressions with the standard boolean operators AND, OR,
and NOT.

34 | Chapter 3 Working With Feature Data

Examples

These examples assume that the feature class you are querying has an integer
property named year and a string property named owner. To select all features
newer than 2001, create a filter like this:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter('year > 2001');

To select all features built between 2001 and 2004, create a filter like this:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter('year >= 2001 and year <= 2004');

To select all features owned by Davis or Davies, create a filter like this:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("owner LIKE 'Davi%s'");

Spatial Filters

With spatial filters, you can do comparisons using geometric properties. For
example, you can select all features that are inside an area on the map, or that
intersect an area.

There are two ways of using spatial filters:

■ Create a separate spatial filter to apply to the feature source, using the
MgFeatureQueryOptions::SetSpatialFilter() method.

■ Include spatial properties in a basic filter created with the
MgFeatureQueryOptions::SetFilter() method.

The MgFeatureQueryOptions::SetSpatialFilter() method requires an
MgGeometry object to define the geometry and a spatial operation to compare
the feature property and the geometry. The spatial operations are defined in
class MgFeatureSpatialOperations.

To include spatial properties in a basic filter, define the geometry using WKT
format. Use the GEOMFROMTEXT() function in the basic filter, along with one
of the following spatial operations:

■ CONTAINS

■ COVEREDBY

Selecting with the Web API | 35

■ CROSSES

■ DISJOINT

■ EQUALS

■ INTERSECTS

■ OVERLAPS

■ TOUCHES

■ WITHIN

■ INSIDE

NOTE Not all spatial operations can be used on all features. It depends on the
capabilities of the FDO provider that supplies the data. This restriction applies to
separate spatial filters and spatial properties that are used in a basic filter.

Creating Geometry Objects From Features

You may want to use an existing feature as part of a spatial query. To retrieve
the feature’s geometry and convert it into an appropriate format for a query,
perform the following steps:

■ Create a query that will select the feature.

■ Query the feature class containing the feature using the
MgFeatureService::SelectFeatures() method.

■ Obtain the feature from the query using the MgFeatureReader::ReadNext()
method.

■ Get the geometry data from the feature using the
MgFeatureReader::GetGeometry() method. This data is in AGF binary
format.

■ Convert the AGF data to an MgGeometry object using the
MgAgfReaderWriter::Read() method.

For example, the following sequence creates an MgGeometry object representing
the boundaries of District 1 in the sample data.

36 | Chapter 3 Working With Feature Data

$districtQuery = new MgFeatureQueryOptions();

$districtQuery->SetFilter("Autogenerated_SDF_ID = 1");

$districtResId = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Data/VotingDistricts.FeatureSource");

$featureReader = $featureService->SelectFeatures($districtResId,

"VotingDistricts", $districtQuery);

$featureReader->ReadNext();

$districtGeometryData = $featureReader->GetGeometry('Data');

$agfReaderWriter = new MgAgfReaderWriter();

$districtGeometry = $agfReaderWriter->Read($districtGeometryData);

To convert an MgGeometry object into its WKT representation, use the
MgWktReaderWriter::Write() method, as in the following example:

$wktReaderWriter = new MgWktReaderWriter();

$districtWkt = $wktReaderWriter->Write($districtGeometry);

Examples

The following examples assume that $testArea is an MgGeometry object
defining a polygon, and $testAreaWkt is a WKT description of the polygon.

To create a filter to find all properties owned by Schmitt in the area, use either
of the following sequences:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'Schmitt%'");

$queryOptions->SetSpatialFilter('SHPGEOM', $testArea,

MgFeatureSpatialOperations::Inside);

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'Schmitt%'

AND SHPGEOM inside GEOMFROMTEXT('$testAreaWkt')";

Example: Listing Selected Features

The following example creates a selection, then lists properties from the
selected features.

It selects parcels within the boundaries of District 1 that are owned by Schmitt.
This requires a spatial filter and a basic filter.

Example: Listing Selected Features | 37

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <title>Selecting properties</title>

 </head>

 <body>

 <h1>Selection</h1>

 <?php

 include 'AppConstants.php';

 $mgSessionId = ($_SERVER['REQUEST_METHOD'] == "POST")?

 $_POST['SESSION']: $_GET['SESSION'];

 $mapName = ($_SERVER['REQUEST_METHOD'] == "POST")?

 $_POST['MAPNAME']: $_GET['MAPNAME'];

 try

 {

 // Initialize the Web Extensions and connect to

 // the Server using the Web Extensions session

 // identifier stored in PHP session state.

 MgInitializeWebTier ($configFilePath);

 $userInfo = new MgUserInformation($mgSessionId);

 $siteConnection = new MgSiteConnection();

 $siteConnection->Open($userInfo);

 $resourceService = $siteConnection->

 CreateService(MgServiceType::ResourceService);

 $featureService = $siteConnection->

 CreateService(MgServiceType::FeatureService);

 $map = new MgMap();

 $map->Open($resourceService, $mapName);

 // Get the geometry for the boundaries of District 1

38 | Chapter 3 Working With Feature Data

$districtQuery = new MgFeatureQueryOptions();

$districtQuery->SetFilter("Autogenerated_SDF_ID = 1");

$districtResId = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Data/VotingDistricts.FeatureSource");

$featureReader = $featureService->

SelectFeatures($districtResId, "VotingDistricts",

$districtQuery);

$featureReader->ReadNext();

$districtGeometryData = $featureReader->

GetGeometry('Data');

// Convert the AGF binary data to MgGeometry.

$agfReaderWriter = new MgAgfReaderWriter();

$districtGeometry = $agfReaderWriter->

Read($districtGeometryData);

// Create a filter to select the desired features.

// Combine a basic filter and a spatial filter.

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'Schmitt%'");

$queryOptions->SetSpatialFilter('SHPGEOM',

$districtGeometry,

MgFeatureSpatialOperations::Inside);

// Select the features.

$featureResId = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Data/Parcels.FeatureSource");

$featureReader = $featureService->

SelectFeatures($featureResId, "Parcels",

$queryOptions);

// For each selected feature, display the address.

echo '<p>Properties owned by Schmitt ';

echo 'in District 1</p><p>';

while ($featureReader->ReadNext())

{

$val = $featureReader->GetString('RPROPAD');

echo $val . '
';

Example: Listing Selected Features | 39

}

echo '</p>';

}

catch (MgException $e)

{

echo $e->GetMessage();

echo $e->GetDetails();

}

?>

</body>

</html>

Active Selections
A map may have an active selection, which is a list of features on the map
that have been selected. Features in the active selection are highlighted in the
Viewer. The active selection is part of the run-time map state, and is not stored
with the map resource in the repository.

The most direct method for creating an active selection is to use the interactive
selection tools in the Viewer. Applications can also create selections using the
Web API and apply them to a user’s view of the map.

NOTE There is a fundamental difference in how the two Viewers manage selections.
In the DWF Viewer, selection is handled entirely by the Viewer. This means that
the Web server must request the selection information before it can use it.

In the AJAX Viewer, any changes to the active selection require re-generation
of the map image. Because of this, the Web server keeps information about
the selection.

Selecting with the Viewer

In order for a feature to be selectable using the Viewer, the following criteria
must be met:

■ The layer containing the feature must be visible at the current map view
scale.

■ The selectable property for the layer must be true. Change this property
in the web layout or with the MgLayer::SetSelectable() method.

40 | Chapter 3 Working With Feature Data

There are different selection tools available in the Viewer. They can be enabled
or disabled as part of the web layout. Each tool allows a user to select one or
more features on the map.

Working With the Active Selection

For the AJAX Viewer, whenever a selection is changed by the Viewer, the
selection information is sent to the web server so the map can be re-generated.
For the DWF Viewer, the selection information is managed by the Viewer, so
the Viewer must pass the selection information to the web server before it can
be used.

If you are writing an application that will be used by both Viewers, you can
use the DWF method, which will result in some additional overhead for the
AJAX Viewer. Alternatively, you can write different code for each Viewer.

To retrieve and manipulate the active selection for a map (AJAX Viewer):

1 Create an MgSelection object for the map. Initialize it to the active
selection.

2 Retrieve selected layers from the MgSelection object.

3 For each layer, retrieve selected feature classes. There will normally be
one feature class for the layer, so you can use the
MgSelection::GetClass() method instead of the
MgSelection::GetClasses() method.

4 Call MgSelection::GenerateFilter() to create a selection filter that
contains the selected features in the class.

5 Call MgFeatureService::SelectFeatures() to create an MgFeatureReader
object for the selected features.

6 Process the MgFeatureReader object, retrieving each selected feature.

The procedure for the DWF Viewer is similar, but the Viewer must send the
selection information as part of the HTTP request.

To retrieve and manipulate the active selection for a map (DWF Viewer):

1 Get the current selection using the Viewer API call GetSelectionXML().

Working With the Active Selection | 41

2 Pass this to the Web server as part of an HTTP request. The simplest
method for this is to use the Submit() method of the form frame. This
loads a page and passes the parameters using an HTTP POST.

3 In the page, create an MgSelection object for the map.

4 Initialize the MgSelection object with the list of features passed to the
page.

5 Retrieve selected layers from the MgSelection object.

6 For each layer, retrieve selected feature classes. There will normally be
one feature class for the layer, so you can use the
MgSelection::GetClass() method instead of the
MgSelection::GetClasses() method.

7 Call MgSelection::GenerateFilter() to create a selection filter that
contains the selected features in the class.

8 Call MgFeatureService::SelectFeatures() to create an MgFeatureReader
object for the selected features.

9 Process the MgFeatureReader object, retrieving each selected feature.

Example: Listing Selected Parcels (AJAX Viewer)

To run the following example, view a map created with the sample data. Using
one of the selection tools, select one or more parcels.

NOTE The sample code below is not complete. You must perform standard
initialization steps and exception trapping.

The example creates a Resource Service connection to open the map and a
Feature Service connection to read the feature information. In addition, you
will require an MgFeatureQueryOptions object for creating the list of features.

The MgSelection object contains selection information for a given map. It
can either contain the current selection or a selection created from XML data.
For this example, create the object with the current map selection.

Get the list of layers and iterate through them. When the $layers collection
is empty, there are no features selected.

42 | Chapter 3 Working With Feature Data

// Initialize the Web Extensions and connect to the Server using

// the Web Extensions session identifier stored in PHP

// session state.

MgInitializeWebTier ($configFilePath);

$userInfo = new MgUserInformation($mgSessionId);

$siteConnection = new MgSiteConnection();

$siteConnection->Open($userInfo);

$resourceService = $siteConnection->CreateService(

 MgServiceType::ResourceService);

$featureService = $siteConnection->CreateService(

 MgServiceType::FeatureService);

$queryOptions = new MgFeatureQueryOptions();

$map = new MgMap();

$map->Open($resourceService, $mapName);

// ----- Beginning of AJAX-specific code ----------

// Create the selection object by retrieving the current

// selection from the map.

$selection = new MgSelection($map);

$selection->Open($resourceService, $mapName);

// ----- End of AJAX-specific code ----------------

$layers = $selection->GetLayers();

if ($layers)

{

 for ($i = 0; $i < $layers->GetCount(); $i++)

 {

 // Only check selected features in the Parcels layer.

 $layer = $layers->GetItem($i);

 if ($layer && $layer->GetName() == 'Parcels')

 {

 // Create a filter containing the IDs of the selected

 // features on this layer

Working With the Active Selection | 43

$layerClassName = $layer->GetFeatureClassName();

$selectionString = $selection->GenerateFilter(

$layer, $layerClassName);

// Get the feature resource for the selected layer

$layerFeatureId = $layer->GetFeatureSourceId();

$layerFeatureResource = new

MgResourceIdentifier($layerFeatureId);

// Apply the filter to the feature resource for the

// selected layer. This returns

// an MgFeatureReader of all the selected features.

$queryOptions->SetFilter($selectionString);

$featureReader = $featureService->SelectFeatures(

$layerFeatureResource, $layerClassName, $queryOptions);

// Process each item in the MgFeatureReader, displaying

the

// owner name and address

while ($featureReader->ReadNext())

{

$val = $featureReader->GetString('NAME') . ', ' .

$featureReader->GetString('RPROPAD');

echo $val . '
';

}

}

}

}

else

echo 'No selected layers';

Example: Listing Selected Parcels (DWF Viewer)

The steps for listing the selected parcels for the DWF Viewer are nearly the
same as for the AJAX Viewer. The major difference is you must pass the
selection information from the Viewer to your page.

One method to do this is to create a JavaScript function, then call this function
from the Viewer using an Invoke Script command. In an HTML page that
includes an embedded Viewer, add the following JavaScript function:

44 | Chapter 3 Working With Feature Data

function listSelected()

{

xmlSel = ViewerFrame.mapFrame.GetSelectionXML();

params = new Array("SESSION",

ViewerFrame.mapFrame.GetSessionId(), "SELECTION", xmlSel);

ViewerFrame.formFrame.Submit("../devguide/dwfselection.php",

params, "taskPaneFrame");

}

In your web layout, create a new command and add it to the task list. Set the
command type to Invoke Script. Set the script to invoke to

parent.listSelected();

Create a page named dwfselection.php in the devguide directory. This can
be exactly the same as Example: Setting the Active Selection (page 45), with
one modification. Replace the AJAX-specific code with the following:

$selection = new MgSelection($map, $_POST['SELECTION']);

When you select your command from the task list, it runs the custom JavaScript
function, which passes the selection XML to dwfselection.php and loads it
into the task pane.

Setting the Active Selection With the Web API

To set the run-time map selection using a query, perform the following steps:

■ Create a selection as described in Selecting with the Web API (page 33).
This creates a feature reader containing the selected features.

■ Create an MgSelection object to hold the features in the feature reader.

■ Send the selection to the viewer, along with a call to the Viewer API
function SetSelectionXML().

Example: Setting the Active Selection

The following example combines the pieces needed to create a selection using
the Web API and pass it back to the Viewer where it becomes the active
selection for the map. It is an extension of the example shown in Example:
Listing Selected Features (page 37).

Setting the Active Selection With the Web API | 45

The PHP code in this example creates the selection XML. Following that is a
JavaScript function that calls the SetSelectionXML() function with the
selection. This function is executed when the page loads.

46 | Chapter 3 Working With Feature Data

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <title>Server-side Selection</title>

 <meta content="text/html; charset=utf-8"

 http-equiv="Content-Type">

 <meta http-equiv="content-script-type"

 content="text/javascript" />

 <meta http-equiv="content-style-type" content="text/css" />

 <link href="styles/globalStyles.css" rel="stylesheet"

 type="text/css">

 <link href="styles/alphaStyles.css" rel="stylesheet"

 type="text/css">

 </head>

 <body class="AppFrame" onLoad="OnPageLoad()">

 <h1 class="AppHeading">Example</h1>

 <?php

 include 'AppConstants.php';

 $mgSessionId = ($_SERVER['REQUEST_METHOD'] == "POST")

 ? $_POST['SESSION']: $_GET['SESSION'];

 $mapName = ($_SERVER['REQUEST_METHOD'] == "POST")

 ? $_POST['MAPNAME']: $_GET['MAPNAME'];

 try

 {

 // Initialize the Web Extensions and connect to

 // the Server using

 // the Web Extensions session identifier stored

 // in PHP session state.

 MgInitializeWebTier ($configFilePath);

 $userInfo = new MgUserInformation($mgSessionId);

 $siteConnection = new MgSiteConnection();

 $siteConnection->Open($userInfo);

Example: Setting the Active Selection | 47

$resourceService = $siteConnection->CreateService(

MgServiceType::ResourceService);

$featureService = $siteConnection->CreateService(

MgServiceType::FeatureService);

$map = new MgMap();

$map->Open($resourceService, $mapName);

// Get the geometry for the boundaries of District 1

$districtQuery = new MgFeatureQueryOptions();

$districtQuery->SetFilter("Autogenerated_SDF_ID = 1");

$districtResId = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Data/VotingDistricts.FeatureSource");

$featureReader = $featureService->SelectFeatures(

$districtResId, "VotingDistricts", $districtQuery);

$featureReader->ReadNext();

$districtGeometryData = $featureReader->GetGeometry(

'Data');

// Convert the AGF binary data to MgGeometry.

$agfReaderWriter = new MgAgfReaderWriter();

$districtGeometry = $agfReaderWriter->Read(

$districtGeometryData);

// Create a filter to select the desired features.

// Combine a basic filter and a spatial filter.

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'Schmitt%'");

$queryOptions->SetSpatialFilter('SHPGEOM',

$districtGeometry,

MgFeatureSpatialOperations::Inside);

// Get the features from the feature source,

// turn it into a selection, then save as XML.

$featureResId = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Data/Parcels.FeatureSource");

$featureReader = $featureService->SelectFeatures(

$featureResId, "Parcels", $queryOptions);

48 | Chapter 3 Working With Feature Data

$layer = $map->GetLayers()->GetItem('Parcels');

$selection = new MgSelection($map);

$selection->AddFeatures($layer, $featureReader, 0);

$selectionXml = $selection->ToXml();

echo 'Setting selection...';

}

catch (MgException $e)

{

echo $e->GetMessage();

echo $e->GetDetails();

}

?>

</body>

<script language="javascript">

<!-- Emit this function and assocate it with the onLoad event -->

<!-- for the page so that it gets executed when this page loads-->

<!-- in the browser. The function calls the SetSelectionXML -->

<!-- method on the Viewer Frame, which updates the current -->

<!-- selection on the viewer and the server. -->

function OnPageLoad()

{

selectionXml = '<?php echo $selectionXml; ?>';

parent.parent.SetSelectionXML(selectionXml);

}

</script>

</html>

Example: Setting the Active Selection | 49

Modifying Maps and
Layers

In this chapter

■ Introduction

■ Adding An Existing Layer To A
Map

■ Creating Layers By Modifying XML

■ Another Way To Create Layers

■ Adding Layers To A Map

■ Making Changes Permanent

4

51

Introduction
This chapter describes how to modify maps and layers.

Adding An Existing Layer To A Map
If the layer already exists in the resource repository, add it to the map by
getting the map’s layer collection and then adding the layer to that collection.

$layerCollection = $map->GetLayers();

$layerCollection->Add($layer);

By default, newly added layers are added to the bottom of the drawing order,
so they may be obscured by other layers. If you want to specify where the
layer appears in the drawing order, use the $layerCollection->Insert()
method. For an example, see Adding Layers To A Map (page 63).

NOTE In the MapGuide API, getting a collection returns a reference to the
collection. So adding the layer to the layer collection immediately updates the
map.

Creating Layers By Modifying XML
The easiest way to programmatically create new layers is to

1 Build a prototype layer through the Studio UI. To make the scripting
simpler, this layer should have as many of the correct settings as can be
determined in advance.

2 Use Studio’s Save as Xml command to save the layer as an XML file.

3 Have the script load the XML file and then use the DOM (Document
Object Model) to change the necessary XML elements.

4 Add the modified layer to the map.

The XML schema for layer definitions is defined by the
LayerDefinition-version.xsd schema which is documented in the MapGuide
Web API Reference. This schema closely parallels the UI in the Studio’s Layer
Editor, as described in the Studio Help.

52 | Chapter 4 Modifying Maps and Layers

This example

■ loads a layer that has been created through Studio

■ uses the DOM to changes the filter and its associated legend label

You can use the DOM to modify any layers, including ones that already exist
in the map, not just new layers that you are adding to the map. You can also
use the DOM to modify other resources; the XML schemas are described in
the MapGuide Web API Reference.

Creating Layers By Modifying XML | 53

// (initialization etc. not shown here)

// Open the map

 $map = new MgMap();

 $map->Open($resourceService, 'Sheboygan');

 // --//

 // Load a layer from XML, and use the DOM to change it

 // Load the prototype layer definition into

 // a PHP DOM object.

 $domDocument =

 DOMDocument::load('RecentlyBuilt.LayerDefinition');

 if ($domDocument == NULL)

 {

 echo "The layer definition

 'RecentlyBuilt.LayerDefinition' could not be

 found.
\n";

 return;

 }

 // Change the filter

 $xpath = new DOMXPath($domDocument);

 $query = '//AreaRule/Filter';

 // Get a list of all the <AreaRule><Filter> elements in

 // the XML.

 $nodes = $xpath->query($query);

 // Find the correct node and change it

 foreach ($nodes as $node)

 {

 if ($node->nodeValue == 'YRBUILT > 1950')

 {

 $node->nodeValue = 'YRBUILT > 1980';

 }

 }

 // Change the legend label

 $query = '//LegendLabel';

 // Get a list of all the <LegendLabel> elements in the

 // XML.

 $nodes = $xpath->query($query);

 // Find the correct node and change it

 foreach ($nodes as $node)

 {

 if ($node->nodeValue == 'Built after 1950')

 {

 $node->nodeValue = 'Built after 1980';

 }

54 | Chapter 4 Modifying Maps and Layers

}

// ...

The page then goes on to save the XML to a resource and loads that resource
into the map, as described inAdding Layers To A Map (page 63).

NOTE For another example of this approach, see the findparcelfunctions.php
and findaddressfunctions.php scripts in the sample application.

If you wish to modify an existing layer that is visible in other users’ maps,
without affecting those maps:

1 Copy the layer to the user’s session repository.

2 Modify the layer and save it back to the session repository.

3 Change the user’s map to refer to the modified layer.

See Adding Layers To A Map (page 63).

Another Way To Create Layers
The method described in the previous section is easy to use, but requires a
layer definition be created first through the Studio UI. An alternative approach
is to use the methods defined in

WebServerExtensions\www\mapviewerphp\layerdefinitionfactory.php.

This file contains several functions, which can be used to build up a layer
definition. The parameters of these functions enable you to set the most
commonly used settings. (If you need to change other settings, you will have
to either use the Studio UI, or modify the XML of the layer definition.)

Another Way To Create Layers | 55

LayerDefinition

$featureClass
$resourceId

$geometry
$featureClassRange

AreaTypeStyle

$areaRules

LineTypeStyle

$lineRules

PointTypeStyle

$pointRule

AreaRule
$legendLabel
$filterText
$foreGroundColor

LineRule
$legendLabel
$filter
$color

PointRule
$legendLabel
$filter
$label
$pointSym

MarkSymbol

$height

$symbolName
$width

$resourceId

$color

TextSymbol

$foregroundColor
$fontHeight
$text

ScaleRange

$maxScale
$minScale

$typeStyle

DescriptionParameterFunction

The repository path of the feature source for
the layer. For example: Library://Sam-

$resourceIdCreateLayerDefini-

tion()

ples/Sheboygan/Data/Parcels.Fea-

tureSource. Equivalent to the Data re-
source used in this layer field in Studio’s layer
editor.

56 | Chapter 4 Modifying Maps and Layers

DescriptionParameterFunction

The feature class to use. For example,
SHP_Schema:Parcels. Equivalent to the
Feature class field in Studio’s layer editor.

$featureClass

The geometry to use from the feature class.
For example, SHPGEOM. Equivalent to the
Geometry field in Studio’s layer editor.

$geometry

A scale range created by filling in a scale
range template (ScaleRange.templ).

$featureClass-

Range

The minimum scale range to which this rule
applies. Equivalent to the From field in Stu-
dio’s layer editor.

$minScaleCreateScaleRange()

The maximum scale range to which this rule
applies. Equivalent to the To field in Studio’s
layer editor.

$maxScale

A type style created by using Cre-
ateAreaTypeStyle(), CreateLineType-
Style() or CreatePointTypeStyle().

$typeStyle

One or more area rules, created by Cre-
ateAreaRule.

$areaRulesCreateAreaTypeStyle()

The text for the label shown beside this rule
in the legend. Equivalent to the Geometry
field in Studio’s layer editor.

$legendLabelCreateAreaRule()

The filter expression that determines which
features match this rule. For example, SQFT

$filterText

>= 1 AND SQFT < 800. Equivalent
to the Condition field in Studio’s layer editor.

Another Way To Create Layers | 57

DescriptionParameterFunction

The color to be applied to areas that match
this rule. Equivalent to the Foreground color
field in Studio’s layer editor.

$foreGroundColor

The string for the text.$textCreateTextSymbol()

The height for the font.$fontHeight

The foreground color.$foregroundColor

One or more point rules, created by Create-
PointRule().

$pointRuleCreatePointTypeStyle()

The label shown beside this rule in the leg-
end. Equivalent to the Legend label field in
Studio’s layer editor.

$legendLabelCreatePointRule()

The filter expression that determines which
features match this rule. Equivalent to the
Condition field in Studio’s layer editor.

$filter

The text symbol, created by CreateTextSym-
bol().

$label

A mark symbol created by CreateMarkSym-
bol().

$pointSym

The resource ID of the symbol used to mark
each point. For example, library://Sam-

$resourceIdCreateMarkSymbol()

ples/Sheboygan/Symbols/BasicSym-

bols.SymbolLibrary. Equivalent to the
Location field in the Select a symbol from a
Symbol Library dialog in Studio’s layer editor.

The name of the desired symbol in the sym-
bol library.

$symbolName

58 | Chapter 4 Modifying Maps and Layers

DescriptionParameterFunction

The width of the symbol (in points). Equiva-
lent to the Width field in the Style Point dia-
log in Studio’s layer editor.

$width

The height of the symbol (in points). Equiva-
lent to the Height field in the Style Point dia-
log in Studio’s layer editor.

$height

The color for the symbol. Equivalent to the
Foreground color field in the Style Point dia-
log in Studio’s layer editor.

$color

One or more line rules, created by Create-
LineRule().

$lineRulesCreateLineTypeStyle()

The color to be applied to lines that match
this rule. Equivalent to the Color field in Stu-
dio’s layer editor.

$colorCreateLineRule()

The label shown beside this rule in the leg-
end. Equivalent to the Legend Label field in
Studio’s layer editor.

$legendLabel

The filter expression that determines which
features match this rule. Equivalent to the
Condition field in Studio’s layer editor.

$filter

For more information on these settings, see the Studio Help.

Example - Creating A Layer That Uses Area Rules

This example shows how to create a new layer using the factory. This layer
uses three area rules to theme parcels by their square footage.

Example - Creating A Layer That Uses Area Rules | 59

// ...

 /---//

 $factory = new LayerDefinitionFactory();

/// Create three area rules for three different

// scale ranges.

$areaRule1 = $factory->CreateAreaRule('1 to 800',

'SQFT >= 1 AND SQFT < 800', 'FFFFFF00');

$areaRule2 = $factory->CreateAreaRule('800 to 1600',

'SQFT >= 800 AND SQFT < 1600', 'FFFFBF20');

$areaRule3 = $factory->CreateAreaRule('1600 to 2400',

'SQFT >= 1600 AND SQFT < 2400', 'FFFF8040');

// Create an area type style.

$areaTypeStyle = $factory->CreateAreaTypeStyle(

$areaRule1 . $areaRule2 . $areaRule3);

// Create a scale range.

$minScale = '0';

$maxScale = '1000000000000';

$areaScaleRange = $factory->CreateScaleRange(

$minScale, $maxScale, $areaTypeStyle);

// Create the layer definiton.

$featureClass = 'Library://Samples/Sheboygan/Data/'

. 'Parcels.FeatureSource';

$featureName = 'SHP_Schema:Parcels';

$geometry = 'SHPGEOM';

$layerDefinition = $factory->CreateLayerDefinition(

$featureClass, $featureName, $geometry,

$areaScaleRange);

//---//

// ...

The script then saves the XML to a resource and loads that resource into the
map. See Adding Layers To A Map (page 63).

Example - Using Line Rules

Creating line-based rules is very similar.

60 | Chapter 4 Modifying Maps and Layers

 // ...

 //---//

 $factory = new LayerDefinitionFactory();

 // Create a line rule.

 $legendLabel = '';

$filter = '';

$color = 'FF0000FF';

$lineRule = $factory->CreateLineRule(

$legendLabel, $filter, $color);

// Create a line type style.

$lineTypeStyle = $factory->

CreateLineTypeStyle($lineRule);

// Create a scale range.

$minScale = '0';

$maxScale = '1000000000000';

$lineScaleRange = $factory->

CreateScaleRange($minScale, $maxScale,

$lineTypeStyle);

// Create the layer definiton.

$featureClass = 'Library://Samples/Sheboygan/Data/'

. 'HydrographicLines.FeatureSource';

$featureName = 'SHP_Schema:HydrographicLines';

$geometry = 'SHPGEOM';

$layerDefinition = $factory->

CreateLayerDefinition($featureClass, $featureName,

$geometry, $lineScaleRange);

//---//

// ...

Example - Using Point Rules

To create point-based rules, three methods are used.

Example - Using Point Rules | 61

 // ...

 //---//

 $factory = new LayerDefinitionFactory();

 // Create a mark symbol

 $resourceId = 'Library://Samples/Sheboygan/Symbols/BasicSym

bols.SymbolLibrary';

 $symbolName = 'PushPin';

 $width = '24'; // points

 $height = '24'; // points

 $color = 'FFFF0000';

 $markSymbol = $factory->CreateMarkSymbol($resourceId, $symbol

Name, $width, $height, $color);

 // Create a text symbol

 $text = "ID";

 $fontHeight="12";

 $foregroundColor = 'FF000000';

 $textSymbol = $factory->CreateTextSymbol($text,

 $fontHeight, $foregroundColor);

 // Create a point rule.

 $legendLabel = 'trees';

 $filter = '';

 $pointRule = $factory->CreatePointRule($legendLabel,

 $filter, $textSymbol, $markSymbol);

 // Create a point type style.

 $pointTypeStyle = $factory->

 CreatepointTypeStyle($pointRule);

 // Create a scale range.

 $minScale = '0';

 $maxScale = '1000000000000';

 $pointScaleRange = $factory->CreateScaleRange($minScale,

 $maxScale, $pointTypeStyle);

 // Create the layer definiton.

 $featureClass = 'Library://Tests/Trees.FeatureSource';

 $featureName = 'Default:Trees';

 $geometry = 'Geometry';

 $layerDefinition = $factory->

 CreateLayerDefinition($featureClass, $featureName,

 $geometry, $pointScaleRange);

 //---//

 // ...

62 | Chapter 4 Modifying Maps and Layers

Adding Layers To A Map
The preceding examples have created or modified the XML for layer definitions
in memory. To add those layers to a map:

1 Save the layer definition to a resource stored in the session repository.

2 Add that resource to the map.

This function adds takes a layer’s XML, creates a resource in the session
repository from it, and adds that layer resource to a map.

Adding Layers To A Map | 63

<?php

///

function add_layer_definition_to_map($layerDefinition,

 $layerName, $layerLegendLabel, $mgSessionId,

 $resourceService, &$map)

// Adds the layer definition (XML) to the map.

// Returns the layer.

{

 include('../Common.php');

 // Validate the XML.

 $domDocument = new DOMDocument;

 $domDocument->loadXML($layerDefinition);

 if (! $domDocument->schemaValidate(

 "$schemaDirectory\LayerDefinition-1.0.0.xsd"))

 {

 echo "ERROR: The new XML document is invalid.

\n.";

 return NULL;

 }

 // Save the new layer definition to the session

 // repository

 $byteSource = new MgByteSource($layerDefinition,

 strlen($layerDefinition));

 $byteSource->SetMimeType(MgMimeType::Xml);

 $resourceID = new MgResourceIdentifier(

 "Session:$mgSessionId//$layerName.LayerDefinition");

 $resourceService->SetResource($resourceID,

 $byteSource->GetReader(), null);

 $newLayer = add_layer_resource_to_map($resourceID,

$resourceService, $layerName, $layerLegendLabel,

$map);

return $newLayer;

}

///

This function adds a layer resource to a map.

64 | Chapter 4 Modifying Maps and Layers

function add_layer_resource_to_map($layerResourceID,

 $resourceService, $layerName, $layerLegendLabel, &$map)

// Adds a layer defition (which can be stored either in the

// Library or a session repository) to the map.

// Returns the layer.

{

 $newLayer = new MgLayer($layerResourceID,

$resourceService);

// Add the new layer to the map's layer collection

$newLayer->SetName($layerName);

$newLayer->SetVisible(true);

$newLayer->SetLegendLabel($layerLegendLabel);

$newLayer->SetDisplayInLegend(true);

$layerCollection = $map->GetLayers();

if (! $layerCollection->Contains($layerName))

{

// Insert the new layer at position 0 so it is at

// the top of the drawing order

$layerCollection->Insert(0, $newLayer);

}

return $newLayer;

}

///

?>

This function adds a layer to a legend’s layer group.

Adding Layers To A Map | 65

function add_layer_to_group($layer, $layerGroupName,

 $layerGroupLegendLabel, &$map)

// Adds a layer to a layer group. If necessary, it creates

// the layer group.

{

 // Get the layer group

 $layerGroupCollection = $map->GetLayerGroups();

 if ($layerGroupCollection->Contains($layerGroupName))

 {

 $layerGroup =

 $layerGroupCollection->GetItem($layerGroupName);

 }

 else

 {

 // It does not exist, so create it

 $layerGroup = new MgLayerGroup($layerGroupName);

 $layerGroup->SetVisible(true);

$layerGroup->SetDisplayInLegend(true);

$layerGroup->SetLegendLabel($layerGroupLegendLabel);

$layerGroupCollection->Add($layerGroup);

}

// Add the layer to the group

$layer->SetGroup($layerGroup);

}

///

Making Changes Permanent
So far, all the examples in this chapter have only affected the user’s runtime
version of the map. No other users see those changes, and when the current
user logs out those changes will be lost.

To make changes permanent, the script can save the modified layer back into
the Library.

$byteSource = new MgByteSource($layerDefinition, strlen($layerDef

inition));

$byteSource->SetMimeType(MgMimeType::Xml);

$resourceId = new MgResourceIdentifier("Library://LayerName.Lay

erDefinition");

$resourceService->SetResource($resourceId, $byteSource->GetRead

er(), null);

66 | Chapter 4 Modifying Maps and Layers

Index

A

active selection 40–42, 44–45
AJAX Viewer 42
DWF Viewer 44
in Web API 41
setting with Web API 45

AJAX Viewer 41
active selection 41

C

constants.php 5

D

directory, for examples 3
Document Object Model 52
DOM 52
DWF Viewer 41

active selection 41

E

examples, preparing for 2

F

feature classes 32
feature readers 32–33
features 32, 37

listing selected 37
formFrame, in Viewer 9

H

hellomap.php 5
HTML page, with MapGuide Viewer 14

I

Invoke Script command 13
Invoke URL command type 4

L

layerdefinitionfactory.php 55
Library repository 17

M

maparea frame, in Viewer 9
mapFrame, in Viewer 9
MapGuide Server Page 3
MgGeometry 36

creating from feature 36
MgMap object 17
MSP processing flow 4

R

resources 16

S

sbFrame, in Viewer 9
scriptFrame, in Viewer 9
selecting 33, 40

with the Viewer 40
with the Web API 33

selection filters iv, 34–35
basic 34
spatial iv, 35

services 18
session ID 4
session management 14

67 | Index

T

task pane 10
taskArea, in Viewer 9
taskBar, in Viewer 9
taskFrame, in Viewer 9
taskListFrame, in Viewer 9
taskPaneFrame, in Viewer 9
tbFrame, in Viewer 9

V

Viewer API 11
Viewer commands 2
Viewer frames 8

W

web layout, defining 4
webconfig.ini 8

68 | Index

	Contents
	Introduction
	What This Guide Covers
	Essential Concepts
	Preparing to Run the Examples
	Recommended Directory Structure

	Hello, Map – Basic Map Information
	Web Layouts and MapGuide Server Pages
	MapGuide Page Flow
	Example Code
	Running the Example
	How This Page Works

	Understanding Viewer Frames
	Interactions Between Frames
	MapGuide Viewer API
	Calling the Viewer API from the Task Pane
	Calling the Viewer API from the Script Frame
	Calling the Viewer API with an Invoke Script Command

	MapGuide Web API

	Embedding a Viewer in Your Own Page
	Session Management

	Resources and Repositories
	Library and Session
	Maps

	Understanding Services

	Interacting With Layers
	Overview of Layers
	Basic Layer Properties
	Layer Groups
	Base Layer Groups

	Layer Style
	Layer Visibility
	Example: Actual Visibility

	Refresh and Zoom
	Example

	Enumerating Map Layers
	Example

	Manipulating Layers
	Changing Basic Properties
	Example

	Changing Visibility

	Working With Feature Data
	Overview of Features
	Querying Feature Data
	Feature Readers
	Selecting with the Web API
	Basic Filters
	Examples

	selection filters spatial spatial filtersSpatial Filters
	Creating Geometry Objects From Features
	Examples

	Example: Listing Selected Features

	Active Selections
	Selecting with the Viewer
	Working With the Active Selection
	Example: Listing Selected Parcels (AJAX Viewer)
	Example: Listing Selected Parcels (DWF Viewer)

	Setting the Active Selection With the Web API
	Example: Setting the Active Selection

	Modifying Maps and Layers
	Introduction
	Adding An Existing Layer To A Map
	Creating Layers By Modifying XML
	Another Way To Create Layers
	Example - Creating A Layer That Uses Area Rules
	Example - Using Line Rules
	Example - Using Point Rules

	Adding Layers To A Map
	Making Changes Permanent

	Index

