
State of GDAL
GDAL 3.4 & 3.5

Even Rouault
SPATIALYS

August 26th 2021

GDAL/OGR : Introduction

● GDAL? Geospatial Data Abstraction Library. The swiss army
knife for geospatial.

● Read and write Raster (GDAL) and Vector (OGR) datasets
● 250 (mainly) geospatial formats and protocols.
● Widely used

(> 100 http://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal)

● MIT Open Source license (permissive)

http://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal

GDAL 3.4: Zarr format

● Zarr: cloud-oriented format for storage of
chunked, compressed, N-dimensional arrays

GDAL 3.4: Zarr format

● Hierarchical organization of arrays in groups
● Data types: numeric, strings, compound
● Metadata in .json files
● Each chunk in a separate data file
● Several compression methods:

ZLIB, GZIP, LZMA, ZSTD, LZ4, BLOSC
● Filters: delta, …
● Non-geo native. Some practice borrowed from

netCDF-CF (Climate & Forecast) conventions
● Zarr V2 submitted as a candidate for a OGC

community standard

GDAL 3.4: Zarr driver

● Read/write capabilities
● Implements the GDAL multidimensional API
● Implements the GDAL “classic” 2D API
● Handles most data types
● Works with local and remote stores (AWS S3,

Google Cloud Storage, MSFT Azure, …)
● Handles the Zarr V2 and V3 specifications
● Add CRS as an extension (WKT/PROJJSON)
● Some multi-threaded capabilities

GDAL 3.4: Zarr. More reading…

● Format specification and Python reference
implementation:
https://zarr.readthedocs.io/en/stable/

● GDAL Zarr driver documentation:
https://gdal.org/drivers/raster/zarr.html

● OGC Testbed 17: COG/Zarr Evaluation
Engineering Report:
http://docs.opengeospatial.org/per/21-032.html

https://zarr.readthedocs.io/en/stable/
https://gdal.org/drivers/raster/zarr.html
http://docs.opengeospatial.org/per/21-032.html

GDAL 3.4: raster STACIT driver

● STACIT = Spatio-Temporal Asset Catalog
ITems

● Using the projection extension specification:
https://github.com/stac-extensions/projection
to add info about projection, size in pixels,
resolution and geospatial extent.

● Uses VRT internally
● Exposes each asset type as a GDAL

subdataset

https://github.com/stac-extensions/projection

GDAL 3.4: STACIT driver
gdalinfo 'STACIT:"https://planetarycomputer.microsoft.com/api/stac/v1/search?
collections=naip&bbox=-100,40,-99,41&datetime=2020-08-17T00:00:00Z%2F..":
asset=image'
Driver: VRT/Virtual Raster*
Files:
/vsicurl?pc_url_signing=yes&pc_collection=naip&url=https%3A//naipeuwest.blob.core.windows.net/naip/v002/ne/2020/ne_060cm_2020/40099/m_4009928_nw_14_060_20200904
.tif
[... snip …]
/vsicurl?pc_url_signing=yes&pc_collection=naip&url=https%3A//naipeuwest.blob.core.windows.net/naip/v002/ne/2020/ne_060cm_2020/40099/m_4009904_ne_14_060_20200904.
tif

Size is 27580, 81670

Coordinate System is:

PROJCRS["NAD83 / UTM zone 14N",
[... snip …]

ID["EPSG",26914]]

Origin = (441600.000000000000000,4539144.000000000000000)

Pixel Size = (0.600000000000000,-0.600000000000000)

[... snip …]

Band 1 Block=128x128 Type=Byte, ColorInterp=Red

 Description = Red

Band 2 Block=128x128 Type=Byte, ColorInterp=Green

 Description = Green

Band 3 Block=128x128 Type=Byte, ColorInterp=Blue

 Description = Blue

Band 4 Block=128x128 Type=Byte, ColorInterp=Undefined

 Description = NIR

https://planetarycomputer.microsoft.com/api/stac/v1/search?collections=naip&bbox=-100,40,-99,41&datetime=2020-08-17T00:00:00Z%2F..%22:asset=image
https://planetarycomputer.microsoft.com/api/stac/v1/search?collections=naip&bbox=-100,40,-99,41&datetime=2020-08-17T00:00:00Z%2F..%22:asset=image
https://planetarycomputer.microsoft.com/api/stac/v1/search?collections=naip&bbox=-100,40,-99,41&datetime=2020-08-17T00:00:00Z%2F..%22:asset=image

GDAL 3.4: Coordinate epoch

● Coordinates of ground points in non plate-fixed
CRS like WGS 84 (G1762), ITRF2014,
ATRF2014, … move over time (plate tectonics)

⇒ need to be qualified with coordinate epoch
(!= observation collection)

● Modeling in GDAL: one optional coordinate
epoch attribute attached to a
OGRSpatialReference object

● Used by OGRCoordinateTransformation class
(when time not provided per-coordinate).
⇒ PROJ restriction: only static←→dynamic transformations
supported. Not dynamic←→ dynamic currently

GDAL 3.4: Coordinate epoch

● ogr2ogr/gdal_translate/gdalwarp: new options to
set source/target coordinate epoch

● Formats updated to store coordinate epoch:
○ GeoTIFF
○ GeoPackage
○ FlatGeoBuf
○ JPEG2000 (through GeoTIFF encoding)
○ Persistent Auxiliary Metadata (.aux.xml)
○ GDAL VRT

GDAL 3.5: build system

● Aim: add a CMake build system, and remove
existing autoconf & nmake systems

● Why?
○ Unification of build process rather than having

2 different ones for Windows vs Unix
○ No consistent capabilities and option naming
○ Non-optimal parallel builds with existing builds
○ Lacking: no header dependency tracking, …
○ Very good tooling for CMake (Visual Studio,

qtcreator, …)
○ Users having been crying for CMake GDAL for

years

● Plan & schedule:
○ GDAL 3.5: addition of CMake build system

(CMake 3.9 minimum version).
autoconf/nmake kept but deprecated

○ GDAL 3.6: only CMake. autoconf/nmake
removed

● Credits:
○ Hiroshi Miura for the bootstrapping with

cmake4gdal repository !
○ GDAL sponsorship program: for funding

all the fine tuning & integration effort

GDAL 3.5: build system

GDAL 3.5: GeoParquet & GeoArrow
vector drivers

● Parquet is an open source, column-oriented
data file format designed for efficient data
storage and retrieval.

● Column-oriented = information for a given
attribute is grouped by many rows

● Data analysis focused databases/systems:
Snowflake, Google BigQuery, etc.

● GeoParquet 0.4.0 extension: defines metadata
(CRS, etc.) and geometry encoding (WKB)

● Doc: https://gdal.org/drivers/vector/parquet.html
and https://gdal.org/drivers/vector/arrow.html

https://gdal.org/drivers/vector/parquet.html
https://gdal.org/drivers/vector/arrow.html

GDAL 3.5: Miscellaneous

● JPEG-XL codec for (Geo)TIFF (libjxl + internal
libtiff copy of GDAL required). JPEG-XL:

○ “Next-gen” codec from the JPEG group
○ Lossless and lossy profiles
○ Many channels/bands
○ Up to 24-bit integer / 32-bit floating point
○ Libjxl: BSD 3-clause ref. implementation

● 64-bit integer data types for raster
● OGR SAP Hana vector driver (requires close

source ODBC driver)
● Removal of a few legacy/unmaintained drivers

GDAL 3.6 preview

● Column-oriented read API for vector layers,
using Arrow array stream interface
⇒ https://gdal.org/development/rfc/rfc86_column_oriented_api.html

● Full open-source built-in support for creation /
update support of (vector) Esri FileGeodatase
(.gdb) ⇒ mostly make FileGDB closed-source
SDK useless

● New drivers: JPEGXL, KTX2, BASISU

Thanks to GDAL sponsors!

Questions?

Links:
 http://gdal.org/

Contact: even.rouault@spatialys.com

http://www.gdal.org/
mailto:even.rouault@spatialys.com

