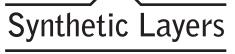
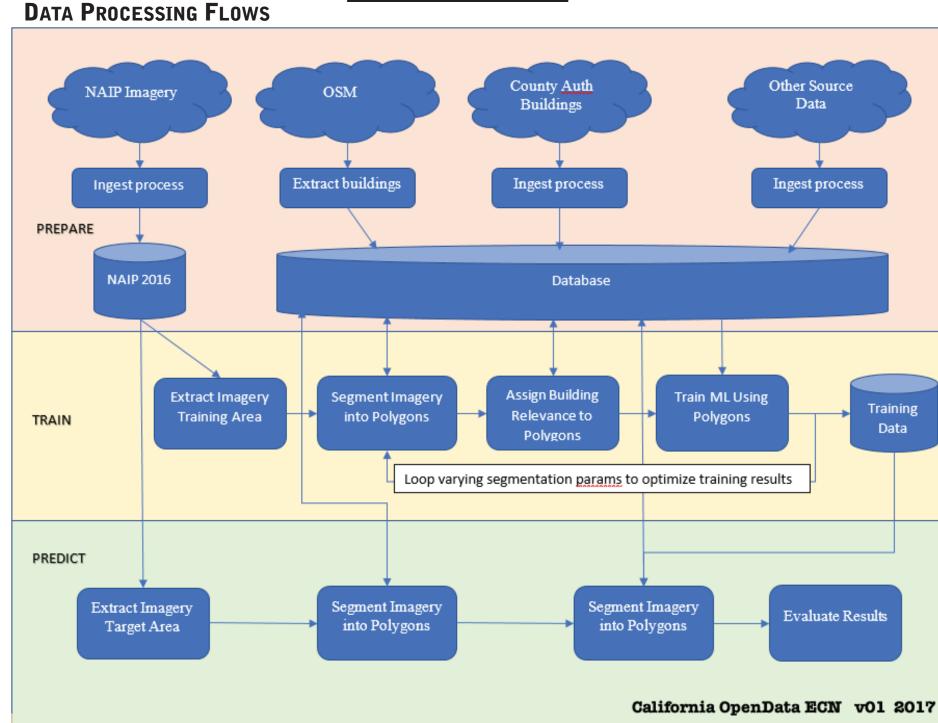
Object-I for bu in C: ct-Based I buildings alifornia Image extraction Analysis

Brian M Hamlin Steve Woodbridge

California OpenData ECN +1 510 225 1702 ECN@light42.com


NAIP National Agricultural Imagery Program 2016

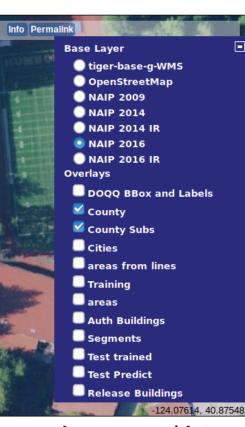


USGS Imagery Programs supplied 2016 DOQQ "digital orthophoto quadrangle" for California as 11,000 GeoTIFFs in four-bands; aprox. 5TB on disk.

web view @ 60cm per pixel

description mode true color (r,g,b); JPEG in GeoTIFF; YCbCr false color (ir,g,b) infrared Sobel filter, mask, ir, fc, tc 5b

Segment Polygon Relevance Tests


Each step of the pipeline uses database tables to store its result. Subsequent steps read tables as input. perc_overlap Here, segmentation result polygons are tested against reference polygons to compute measures of similarity. Database schema `relevance` gets a **Five Tests** result table on all polys in a given segmentation run.

insert into relevance."%s"

- select a.gid, %d::integer,
- -- pctoverlap st_area(st_intersection(a.geom, c.geom))/st_area(a.geom),
- -- coverage1 (st area(c.geom) + st area(a.geom) -2.0*st area(st intersection(a.geom, c.geom))) / COV1 (st area(c.geom) + st area(a.geom)),
- -- coverage2 (st area(c.geom) - st area(st intersection(a.geom, c.geom))) / st area(a.geom), COVS

1.111

- -- centr_seg st intersects(st centroid(a.geom), c.geom),
- -- centr trg st intersects(st centroid(c.geom), a.geom)
- -- (a) segment polygons from %s a join %s c on st intersects(a.geom, c.geom) -- (c)building polygons left outer join relevance."%s" b on a.gid=b.gid
 where b.class is null ''' % (rtable, clss, table, btable, rtable)

NAIP quad (DOQQ) is processed into multiple products for analysis

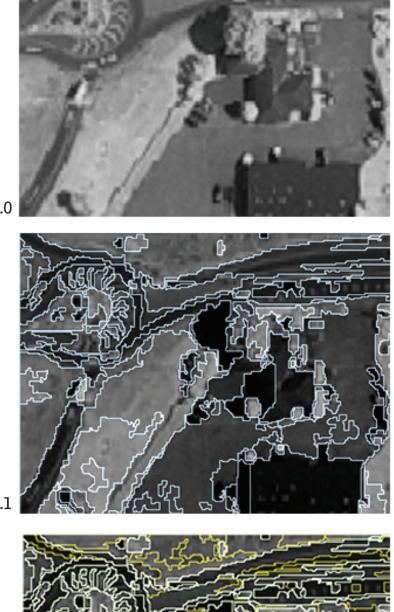
Berkeley ImageSEG 2 **BIS2**

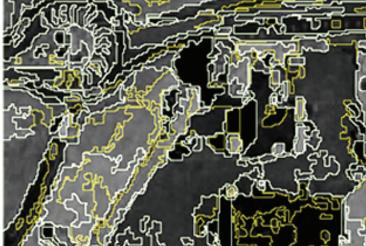
Berkeley ImageSEG • C library

A segmentation kernel with library routines which take raster GeoTIFF or GDAL VRT and produce polygons with statistics, called segments.

parameters

- threshhold
- **s** shape count
- **c** compactness


BIS2 Segmentation Kernel Output Examples


b.0) sample NAIP imagery

b.1) segmented results using a low threshhold (t) value

b.2) vary only (t) to a higher value; notice the same polygon boundaries return in addition to new interior polygons.

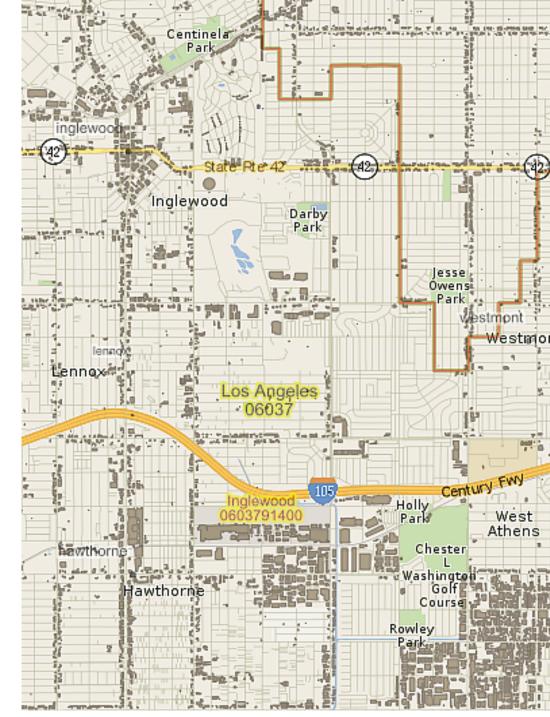
BIS2 Segmentation

Segmented Imagery Polygons over Training Library 2D Polygons; urban Inglewood, California NAIP imagey is processed via BIS2 library emitting polygon geometry plus statistics per polygon. Unique ID (pkey) for both segment polygons and training polygons are labeled.

Segmentation Trials

In order to choose which segmentation settings best fit per "Segmentation" Goodness"¹, each of the three BIS2 params were varied and those permutations were applied. Five Tests are applied to every eligible segment polygon and stored in a table named for the run. Note that the number of segments in a result set will vary and are distinguishable fairly easily.

jobid	project	mode	t	S	C	cnt
5bandt1 5bandt1 5bandt1 5bandt1 5bandt1 5bandt1	test2 test2 test2 test2 test2 test2	5b 5b 5b 5b 5b	50 50 50 50 50	3 3 3 3	3 4 5 6 7	3665 3586 3625 3600 3618
evaltest evaltest evaltest evaltest	evaltest1 evaltest1 evaltest1 evaltest1	tc tc tc	90 90 90 90	9 9 9 9	3 5 7 9	342 387 397 421
humboldt inglewood	target2 run2	5b 5b	50 50	3 3	3 3	330852 228747


(828 rows)

ctr_targ

ctr_seg

A single SQL statement evaluates summary statistics on some number of tables of interest to pick a winner. For example, for all matches on a (jobid, project) pair, any (s,c) with (t) less than 100, find the median value of column **covl** for each table, then sort them and select the closest to (1.0). A python function generates SQL, and another executes it synchronously.

¹ Accuracy Assessment Measures for Object-based Image Segmentation Goodness Nicholas Clinton, Ashley Holt, James Scarborough, Li Yan, and Peng Gong 2010

California_2009080 ouble-click to view legen

tl 2016 uac10 o

t [53479]

[0]

tmp run5 CTRTAR

tmp_run5_CTRSEG [153

htarg2_predict_c2

0.0000 - 0.2000

0.2000 - 0.4000

0.4000 - 0.6000

0.6000 - 0.8000

0.8000 - 1.0000

htarg2_predict

0.0000 - 0.2000

0.2000 - 0.4000 0.4000 - 0.6000

0.6000 - 0.8000

0.8000 - 1.0000

tmp_run5_perco

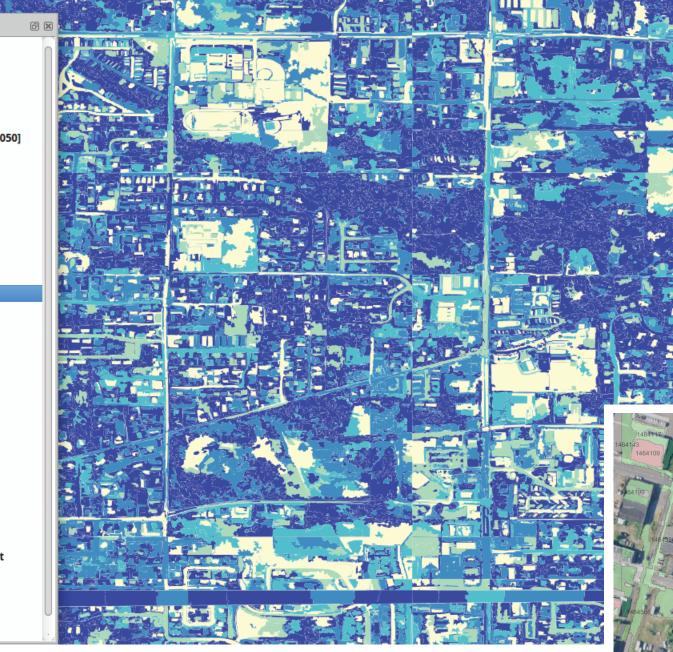
0.0000 - 0.0071

.3514 - 0.8496

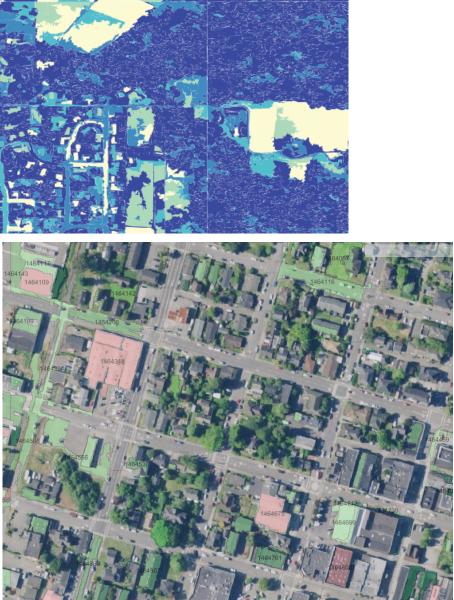
.8496 - 1.0000

train_bldgs_08mar1

la_parkinglot


seg_polys_5b_humbold

0.0071 - 0.0349 0.0349 - 0.1143 .1143 - 0.3514


NAIP imagery in a search area is segmented. Classification is performed via Scikit-Learn GBT. A Gradient-Boost Tree (GBT) model is saved in the training phase, and applied to new areas. Defined **classes** are: **0** not a building; **2** commercial building of interest; **1** other building Each polygon gets three attributes [0 - 1.0] as the probability of class identity e.g. htarg2_predict_c0. Zero means not at all likely, 1.0 means certainty; in practice, the three together equal 1.0.

Training library polygons in Inglewood, CA.

Imagery Segmented, Classified and Predicted as 2D Polygons; Arcata, California

Overview, or How to Read this Poster

NAIP Raster Inputs are Split into Layers

• synthetic layers are then produced and stored Openlayers web defines machine-addressable layer navigation via URL

BIS2 Kernel Produces Segmentation Polygons

segments vary substantially by parameter, so try many variations Use efficient methods to search & sort the segment results; pick a winner

Create a Library of Search Targets use authoritative 2D polygons plus attributes for buildings of interest match building type classifications in a 'crosswalk'

Scikit-Learn Engine to Train, then Search

segments over search targets are scored into defined classes Apply segmentation to a new search area; match with training model; show results

ML Training Library

Supervised Learning with OBIA

Unsupervised machine learning with pixel-based analysis was not chosen as the methodology for this project. Instead, a newer methodology was chosen, supervised classification with Object-Based Image Analysis (OBIA).

In a supervised classification system with OBIA, representative samples for each class of interest are selected as polygons with attributes, and supplied as inputs to create a training set. In search, Scikit-Learn uses its saved training set to compare new segmented polygons derived from search imagery, and emits a scored likelyhood of class membership for each polygon.

Building the Training Library

1) hand-pick several dozen buildings of interest along with convenient attributes, including a 2D polygon footprint and street address.

2) gather similar records from a very large authoritative set.

3) execute and store **Five Tests** on the intersection of segmented imagery and all buildings in the training area, and buildings occurring in the training set. The five attributes are stored for every segment in a table, named in such a way as the segementation parameters are visible in the table name.

relevance table (schema.table_name) :

relevance.inglewood run2 5b 50 03 03

gid integer PRIMARY KEY, class integer, pctoverlap double precision, coverage1 double precision, coverage2 double precision, centr seg boolean, centr trg boolean

- # Training Set Text File #/osmb(zoom level) BldgTypeID, BldgTypeName, Rooftype, Context, Desc
- #14. Hawthorne Elementary School /osmb/?zoom=18&
- lat=40.80213&lon=-124.16604& layers=00000B0TTFFFFF
- 47 Non-Urban Elementary School White corrugated metal
- Asphalt playgrounds & parking lots, fields, suburban cul-de-sac neighborhood, citrus orchards
- Riverside, CA

Building Types Crosswalk

- 13,Commercial,Department Stores,39,,1 14, Commercial, Supermarkets, 41,, 1
- 16, Commercial, Shopping Centers (Regional), 39,, 1 17, Commercial, Office Buildings, 32, ,1

sd_data.train_bldgs_08mar17

integer building_type_id | integer building type name text situscity text shp_area_m integer geom

| geometry (MultiPolygon, 4326)

Training Library Development

Unique 2D Polygon