
G e o s p a t i a l f o r J a v a
F O S S 4 G 2 0 0 9 N e t B e a n s Q u i c k s t a r t

2 7 S e p t e m b e r 2 0 0 9

J o d y G a r n e t t

M i c h a e l B e d w a r d

page intentionally left blank

Geospatial for Java 2/18

Table of Contents

1 Welcome NetBeans Developers.. 4

2 Java Install...5

3 NetBeans... 6

3.1Adding Dependencies using Maven..7

3.2Adding Jars using Library Manager... 11

4 Quickstart.. 15

5 Things to Try... 17

Geospatial for Java 3/18

1 Welcome NetBeans Developers

Welcome to Geospatial for Java -this workbook is aimed at Java developers

who are new to geospatial and would like to get started.

We are going to start out carefully with the steps needed to set up your

IDE; and are pleased this year to cover both NetBeans and Eclipse. The

build tool Maven (http://maven.apache.org/) is our preferred option for

downloading and managing jars for GeoTools projects because there tend

to a large number of jars involved. If you are already familiar with Maven

that is an advantage but if not, don't worry, we will be explaining things

step by step and we will also document how to set up things by hand as an

alternative to using Maven.

Extra care has been taken to make this year's tutorial visual right from the

get go. While these examples will make use of Swing please be assured

that that this is only an aid in making the examples easy and fun to use so

if your own work is based on another GUI framework the material that we

cover here will still be relevant.

These sessions are applicable to both server side and client side

development.

We would like thank members of the GeoTools users list for their feedback

while were preparing the course material, with special thanks to Tom

Williamson for reviewing early drafts.

Geospatial for Java 4/18

http://maven.apache.org/

2 Java Install

We are going to be making use of Java so if you don't have a Java

Development Kit installed now is the time to do so. Even if you have Java

installed already check out the optional Java Advanced Imaging and Java

Image IO section – both of these libraries are used by GeoTools.

1. Download the latest JDK from the the java.sun.com website:
http://java.sun.com/javase/downloads/index.jsp

2. At the time of writing the latest JDK was:
jdk-6u16-windows-i586.exe

3. Click through the installer you will need to set an acceptance a license
agreement and so forth. By default this will install to:
C:\Program Files\Java\jdk1.6.0_16/

4. Optional – Java Advanced Imaging is used by GeoTools for raster
support. If you install JAI 1.1.3 performance will be improved:
https://jai.dev.java.net/binary-builds.html
Both a JDK and JRE installer are available:
jai-1_1_3-lib-windows-i586-jdk.exe
jai-1_1_3-lib-windows-i586-jre.exe

5. Optional – ImageIO Is used to read and write raster fles. GeoTools uses
version 1_1 of the ImageIO library:
https://jai-imageio.dev.java.net/binary-builds.html
Both a JDK and JRE installer are available:
jai_imageio-1_1-lib-windows-i586-jdk.exe
jai_imageio-1_1-lib-windows-i586-jre.exe

Geospatial for Java 5/18

If you are

following this

workbook in a

lab setting

you will fnd

the installer

on the DVD.

https://jai-imageio.dev.java.net/binary-builds.html
https://jai.dev.java.net/binary-builds.html
http://java.sun.com/javase/downloads/index.jsp

3 NetBeans

The NetBeans IDE is a popular choice for Java development and features

excellent Maven integration.

1. Download NetBeans (The Java SE download will be fne).
http://www.netbeans.org/

2. At the time of writing nebeans-6.7.1-ml-javase-windows.exe was the
latest installer.

3. Click through the steps of the installer. You will notice it will pick up on
the JDK you installed earlier.

4. There are two paths ahead – if you don't decide you will be eaten by a
grue.

• Adding Dependencies using Maven

The Maven tool is intended to describe a project; rather then simply list
the steps to build it. Part of that description is a list of the jars the
project will use and a repository on the internet where the jars can be
downloaded from.

• Adding Jars using the NetBeans Library Manager

NetBeans provides a “library manager” allowing you to gather up a
group of jars by hand and set up your project to use them. In this case
the GeoTools project provides a single download with all the needed jars.

Maven is recommended as it is built into Netbeans and allows fne grain

control over what is downloaded (rather then wait for a 40 meg download).

Geospatial for Java 6/18

A “grue” is

from the early

text game

Zork. Trust

us, you don't

want to be

eaten by one.

http://www.netbeans.org/

3.1 Adding Dependencies using Maven

The GeoTools development community, for the most part, uses the build

tool Maven to manage jars and their dependencies. Maven has been

integrated into the latest releases of NetBeans.

The advantages of using Maven are:

• You only download as much of GeoTools as your application requires

• Jars are downloaded to a single location in your home directory
(in a hidden folder called .m2/repository)

• Source code and javadocs are automatically downloaded and hooked up

Let's get started:

1. Start with File > New Project to open the New Project wizard

2. Select the Maven category; choose Maven Project and press Next.

Geospatial for Java 7/18

In a lab

setting the

instructor will

provide you

with a local

repository to

place in your

home

directory.

This step will

allow you to

avoid the long

download.

3. On the Maven Archetype page select “Maven Quickstart Archetype” and
press Next.

4. We can now fll in the blanks

Project name: example
GroupId: org.geotools

5. Click on the Finish button and the new project will be created.

Geospatial for Java 8/18

6. If this is your frst time using Maven with NetBeans it will want to
confrm that it is okay to use the copy of Maven included with NetBeans
(it is also possible to use an external Maven executable from within
Netbeans which is convenient if, for instance, you want to work with the
same version of Maven within the IDE and from the command line).

7. The next step is for us to make it a GeoTools project by adding
information to Maven's project description fle (“project object model”
in Maven-speak) - pom.xml

In the Projects panel open up the Project Files folder and double click on
pom.xml to open it.

8. We are going to start by defning the version number of GeoTools we
wish to use.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <properties>
 <geotools.version>2.6.0</geotools.version>
 </properties>
 <groupId>org.geotools</groupId>
 <artifactId>example</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>example</name>

If you make any mistakes when editing the xml fle you'll see that your
project will be renamed “<Badley formed Maven project>” in the
Projects window. You can choose “Format” as a quick way to check if the
tags line up. Or just hit undo and try again.

Geospatial for Java 9/18

Cutting and

pasting from

the PDF may

be easier then

typing.

9. Next we add two GeoTools modules to the dependencies section: gt-
shapef le and gt-swing for our project.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <properties>
 <geotools.version>2.6.0</geotools.version>
 </properties>
 <groupId>org.geotools</groupId>
 <artifactId>example</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>example</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-shapefile</artifactId>
 <version>${geotools.version}</version>
 </dependency>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-swing</artifactId>
 <version>${geotools.version}</version>
 <exclusions>
 <exclusion>
 <groupId>org.apache.xmlgraphics</groupId>
 <artifactId>batik-transcoder</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>
 <repositories>
 <repository>
 <id>maven2-repository.dev.java.net</id>
 <name>Java.net repository</name>
 <url>http://download.java.net/maven/2</url>
 </repository>
 <repository>
 <id>osgeo</id>
 <name>Open Source Geospatial Foundation Repository</name>
 <url>http://download.osgeo.org/webdav/geotools/</url>
 </repository>
 <repository>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <id>opengeo</id>
 <name>OpenGeo Maven Repository</name>
 <url>http://repo.opengeo.org</url>
 </repository>
 </repositories>
</project>

10.You can now right click on Libraries in the Projects window, then
Download missing Dependencies from the pop-up menu. When
downloading it will check the repositories we have listed above.

11.We will continue to add dependencies on diferent parts of the GeoTools
library as we work through these exercises; this fne grain control and
the ability to download exactly what is needed is one of the advantages
of using Maven.

Congratulations you are now ready for the Quickstart!

Geospatial for Java 10/18

3.2 Adding Jars using Library Manager

The alternative to using Maven to download and manage jars for you is to

manually install them. To start with we will obtain GeoTools from the

website:

1. Download the GeoTools binary release from
http://sourceforge.net/projects/geotools/fles

2. Extract the geotools-2.6.0-bin.zip fle to C:\java\geotools-2.6.0 folder.

3. If you open up the folder and have a look you will see GeoTools and all
of the other jars that it uses including those from other libraries such as
GeoAPI and JTS.

4. We can now set up GeoTools as a library in NetBeans:

From the menu bar choose Tools > Libraries to open the Library
Manager

5. From the Library Manager press the New Library button.

Geospatial for Java 11/18

http://sourceforge.net/projects/geotools/files

6. Enter “GeoTools” for the Library Name and press OK

7. You can now press the Add JAR/Folder button and add in all the jars from
C:\java\GeoTools-2.6.0

8. GeoTools includes a copy of the “EPSG” map projections database; but
also allows you to hook up your own copy of the EPSG database as an
option. However, only one copy can be used at a time so we will need to
remove the following jars from the Library Manager:
gt-epsg-h2
gt-epsg-oracle
gt-epsg-postgresql
gt-epsg-wkt-2.6

9. GeoTools allows you to work with many diferent databases; however to
make them work you will need to download jdbc drivers from the
manufacturer.

For now remove the following plugins from the Library Manager:
gt-arcsde
gt-arcsde-common
gt-db2
gt-jdbc-db2
gt-oracle-spatial
gt-jdbc-oracle

10.We are now ready to proceed with creating an example project. Select
File > New Project

Geospatial for Java 12/18

The EPSG

databaes is

distributed as

an Access

database and

has been

converted

into the pure

java database

HSQL for our

use.

11.Choose the default “Java Application”.

12.Fill in “Example” as the project name; and our initial Main class will be
called “Quickstart” as shown below.

Geospatial for Java 13/18

13.Open up Example in the Projects window, right click on Libraries and
select Add Libraries. Choose GeoTools from the Add Library dialog.

14.Congratulations ! You can now proceed to the Quickstart in the next
section.

Geospatial for Java 14/18

4 Quickstart

Now that your environment is set up we can put together a simple

Quickstart. This example will display a shapef le on screen.

1. Create the org.geotools.demo.Quickstart class using your IDE.

2. Fill in the following code

package org.geotools.demo;

import java.io.File;

import org.geotools.data.FeatureSource;
import org.geotools.data.FileDataStore;
import org.geotools.data.FileDataStoreFinder;
import org.geotools.map.DefaultMapContext;
import org.geotools.map.MapContext;
import org.geotools.swing.JMapFrame;
import org.geotools.swing.data.JFileDataStoreChooser;

/**
 * GeoTools Quickstart demo application. Prompts the user for a shapefile
 * and displays its contents on the screen in a map frame
 */
public class Quickstart {

 /**
 * GeoTools Quickstart demo application. Prompts the user for a shapefile
 * and displays its contents on the screen in a map frame
 */
 public static void main(String[] args) throws Exception {
 // display a data store file chooser dialog for shapefiles
 File file = JFileDataStoreChooser.showOpenFile("shp", null);
 if (file == null) {
 return;
 }

 FileDataStore store = FileDataStoreFinder.getDataStore(file);
 FeatureSource featureSource = store.getFeatureSource();

 // Create a map context and add our shapefile to it
 MapContext map = new DefaultMapContext();
 map.addLayer(featureSource, null);

 // Now display the map
 JMapFrame.showMap(map);
 }
}

3. Now build the application and check that all is well in the Output
window (in Netbeans you use the same commands to build both a
Maven project or a project with jars installed with the Library Manager).

4. We need to download some sample data to work with. We are going to
use some sample data provided with the uDig project (which is written
with GeoTools).

http://udig.refractions.net/docs/data-v1_2.zip

5. Please unzip this data directory to a location you can fnd easily like
your desktop.

Geospatial for Java 15/18

If you need a

good program

to unzip

archive fles

try:

www.7-zip.org

http://udig.refractions.net/docs/data-v1_2.zip
http://www.7-zip.org/

6. Run the application. A fle chooser will be displayed. Please choose a
shapef le from the example data set.

7. The application will connect to your shapef le, produce a map context
and display the shapef le.

|

8. Things to note about this code example:

• The shapef le is not loaded into memory, instead it is read from disk
each and every time it is needed. This approach allows you to work
with data sets larger then available memory.

• We are using a very basic display style here that just shows feature
outlines. In the examples that follow we will see how to specify more
sophisticated styles.

Geospatial for Java 16/18

5 Things to Try

Here are some additional challenges for you to try:

• Try out the diferent sample data sets

• You can zoom in, zoom out and show the full extents

• Use the select tool to examine individual countries in the sample
countries.shp fle

• Download the largest shapef le you can fnd and see how quickly it can
be rendered. You should fnd that the very frst time it will take a while
as a spatial index is generated. After that performance should be very
good when zoomed in.

• Try and sort out what all the diferent “side car” fles are – and what they
are for. The sample data set includes “shp”, “dbf” and “shx”. How many
other side car fles are there?

• The use of FileDataStoreFinder allows us to work easily with fles. The
other way to do things is with a map of connection parameters. This
techniques gives us a little more control over how we work with a
shapef le and also allows us to connect to databases and web feature
servers.

 File file = JFileDataStoreChooser.showOpenFile("shp", null);

 Map<String,Object> params = new HashMap<String,Object>();
 params.put(ShapefileDataStoreFactory.URLP.key, file.toURI().toURL());
 params.put(ShapefileDataStoreFactory.CREATE_SPATIAL_INDEX.key, false);
 params.put(ShapefileDataStoreFactory.MEMORY_MAPPED.key, false);
 params.put(ShapefileDataStoreFactory.DBFCHARSET.key, "ISO-8859-1");

 DataStore store = DataStoreFinder.getDataStore(params);
 FeatureSource featureSource = store.getFeatureSource(store.getTypeNames()[0]);

• GeoTools is a very active open source project. You can quickly use Maven
to try out the latest nightly build by changing your pom.xml fle to use a
“SNAPSHOT” release.

At the time of writing, the active development version is 2.6-SNAPSHOT.

 <properties>
 <geotools.version>2.6-SNAPSHOT</geotools.version>
 </properties>

Geospatial for Java 17/18

• NetBeans has an interesting feature to show how the dependency system
works - Right click on Libraries and choose Show Dependency Graph.

Geospatial for Java 18/18

	1 Welcome NetBeans Developers
	2 Java Install
	3 NetBeans
	3.1 Adding Dependencies using Maven
	3.2 Adding Jars using Library Manager

	4 Quickstart
	5 Things to Try

