
F i l t e r W o r k b o o k
F O S S 4 G 2 0 0 9 G e o s p a t i a l f o r J a v a T u t o r i a l s

27 September 2009

J o d y G a r n e t t

M i c h a e l B e d w a r d

Table of Contents

1 Welcome.. 3

2 Filter Lab..4

2.1Running the Application... 7

3 Things to Try..9

4 Filter... 12

4.1Expression... 12

4.2Query..13

4.3FeatureCollection.. 13

Filter Workbook 2/13

1 Welcome

Welcome to Geospatial for Java -this workbook is aimed at Java developers

who are new to geospatial and would like to get started.

Please set up your development environment prior to starting this tutorial

(both a GeoTools NetBeans Quickstart and GeoTools Eclipse Quickstart are

available). We will list the maven dependencies required at the start of the

workbook.

This is an exciting workbook where we actually sit down and start working

with spatial data. The focus of this workbook is the Filter API used to query

datastores, such as shapef les and databases, and Web Feature Servers

and ask them for their contents.

We are trying out a code frst idea with these workbooks – ofering you a

chance to start with source code and explore the ideas that went into it

later if you have any questions.

This workbook is part of the FOSS4G 2009 conference proceedings.

Jody Garnett

Jody Garnett is the lead architect for the uDig project; and on the steering

committee for GeoTools; GeoServer and uDig. Taking the role of geospatial

consultant a bit too literally, Jody has presented workshops and training

courses in every continent (except Antarctica.) Jody Garnett is an

employee of LISAsoft.

Michael Bedward

Michael Bedward is a researcher with the NSW Department of Environment

and Climate Change and an active contributor to the GeoTools users' list.

He has a particularly wide grasp of all the possible mistakes one can make

using GeoTools.

Filter Workbook 3/13

If you found

this tutorial

online go

ahead and

skip to the

code

examples –

the text is

provided if

you have any

questions.

2 Filter Lab

This example will go through using a Filter to select a FeatureCollection

from a shapef le or other DataStore.

We are going to be using connection parameters to connect to our

DataStore this time; and you will have a chance to try out using PostGIS or

a Web Feature Server at the end of this example.

Let us start the lab:

1. The dependencies we are going to use this time are:

<dependencies>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-main</artifactId>
 <version>${geotools.version}</version>
 </dependency>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-shapefile</artifactId>
 <version>${geotools.version}</version>
 </dependency>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-swing</artifactId>
 <version>${geotools.version}</version>
 <exclusions>
 <exclusion> <!-- we are not using svg icons right now -->
 <groupId>org.apache.xmlgraphics</groupId>
 <artifactId>batik-transcoder</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
</dependencies>

2. Create the fle org.geotools.demo.QueryLab using your IDE.

3. We are going to start by flling in the imports used through out the rest
of the application..

package org.geotools.demo;

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.event.ActionEvent;
import java.io.IOException;
import java.util.Map;

import javax.swing.JComboBox;
import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JOptionPane;
import javax.swing.JScrollPane;
import javax.swing.JTable;
import javax.swing.JTextField;
import javax.swing.table.DefaultTableModel;

Filter Workbook 4/13

4. We then have some GeoTools, GeoAPI and JTS imports to bring in.

import org.geotools.data.DataStore;
import org.geotools.data.DataStoreFinder;
import org.geotools.data.DefaultQuery;
import org.geotools.data.FeatureSource;
import org.geotools.data.shapefile.ShapefileDataStoreFactory;
import org.geotools.feature.FeatureCollection;
import org.geotools.feature.FeatureIterator;
import org.geotools.filter.text.cql2.CQL;
import org.geotools.swing.action.SafeAction;
import org.geotools.swing.data.JDataStoreWizard;
import org.geotools.swing.table.FeatureCollectionTableModel;
import org.geotools.swing.wizard.JWizard;
import org.opengis.feature.simple.SimpleFeature;
import org.opengis.feature.simple.SimpleFeatureType;
import org.opengis.feature.type.FeatureType;
import org.opengis.filter.Filter;

import com.vividsolutions.jts.geom.Coordinate;
import com.vividsolutions.jts.geom.Geometry;
import com.vividsolutions.jts.geom.Point;

public class QueryLab extends JFrame {
 DataStore datastore;
 JComboBox types;
 JTable table;
 JTextField text;
 public QueryLab(DataStore data) {
 this.datastore = data;
 // USER INTERFACE
 }
}

5. As you can see we are building a user interface this time around;
starting from a JFrame and adding a text feld to enter a flter condition,
and a table to display the results.

 public QueryLab(DataStore data) {
 this.datastore = data;
 // USER INTERFACE
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 getContentPane().setLayout(new BorderLayout());

 try {
 types = new JComboBox(datastore.getTypeNames());
 } catch (IOException e1) {
 JOptionPane.showMessageDialog(null, "Unable to find any published content");
 System.exit(0);
 }

 text = new JTextField(80);
 text.setText("include"); // include selects everything!
 getContentPane().add(text, BorderLayout.NORTH);

 table = new JTable();
 table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
 table.setModel(new DefaultTableModel(5, 5));
 table.setPreferredScrollableViewportSize(new Dimension(500, 200));

 JScrollPane scrollPane = new JScrollPane(table);
 getContentPane().add(scrollPane, BorderLayout.CENTER);

 JMenuBar menubar = new JMenuBar();
 setJMenuBar(menubar);

 menubar.add(types);
 JMenu menu = new JMenu("Data");
 menubar.add(menu);
 pack();
 // ACTIONS
}

Filter Workbook 5/13

6. We can now add an Action to the menu to list features

 // ACTIONS
 menu.add(new SafeAction("Get features") {
 public void action(ActionEvent e) throws Throwable {
 filterFeatures();
 }
 });

7. And now we can create our Filter and ask for the FeatureCollection to
display.

 public void filterFeatures() throws Exception {
 String typeName = (String) types.getSelectedItem();
 FeatureSource source = datastore.getFeatureSource(typeName);

 Filter filter = CQL.toFilter(text.getText());
 FeatureCollection features = source.getFeatures(filter);
 FeatureCollectionTableModel model = new FeatureCollectionTableModel(features);
 table.setModel(model);
 }

This is what is happening:

• First we get the feature type name selected by the user and retrieve the
corresponding FeatureSource from the DataStore.

• Next we get the query condition that was entered in the text feld and
use the CQL class to create a Filter object.

• We pass the flter to the getFeatures method which returns the features
matching the query as a FeatureCollection (you met FeatureCollection
before in CSV 2 SHP Lab).

• Finally, we create a FeatureCollectionTableModel for our dialog’s JTable.
This GeoTools class takes a FeatureCollection and retrieves the feature
attribute names and the data for each feature.

8. With the user interface in place we can now create a main method

 public static void main(String[] args) throws Exception {
 JDataStoreWizard wizard = new JDataStoreWizard(new ShapefileDataStoreFactory());

 int result = wizard.showModalDialog();
 if (result != JWizard.FINISH) {
 System.exit(0);
 }

 Map<String, Object> connectionParameters = wizard.getConnectionParameters();
 DataStore dataStore = DataStoreFinder.getDataStore(connectionParameters);
 if (dataStore == null) {
 JOptionPane.showMessageDialog(null, "Could not connect - check parameters");
 System.exit(0);
 }

 JFrame frame = new QueryLab(dataStore);
 frame.setVisible(true);
 }

As you can see most of the code in the main method is to prompt the
user for a shapef le and connect to it.

• In Quickstart and other examples we used JFileDataStoreChooser to
prompt the user for a shapef le. In this example we are using
JDataStoreWizard which requires a few more lines of code. The
advantage of the wizard here is that we can easily modify the code
above to work with a PostGIS database instead of a shapef le.

Filter Workbook 6/13

2.1 Running the Application

We can now run the application and try some queries.

1. Run the application and it will prompt you for a shape fle (and several
optional connection parameters).

Please select the cities.shp fle you downloaded for the quickstart.

2. Press next to advanced to a page of optional parameters.

3. The default query is “include” which will include all the data; select
Data > Get Features from the data menu to request all the cities.

4. Here are some sample queries to try:

CNTRY_NAME = 'France'

Filter Workbook 7/13

Will show only the cities in France:

5. Select all features with value >= 5 for the POP_RANK attribute

POP_RANK >= 5

6. Select features which satisfy two conditions

CNTRY_NAME = ‘Australia’ AND POP_RANK > 5

7. This is a bounding box query that will select all features within the area
bounded by 110 - 155 ° W, 10 - 45 ° S (a loose box around Australia).
Notice that we give the name of the geometry attribute which, for the
cities shapef le, is Point type.

BBOX(the_geom, 110, -45, 155, -10)

Filter Workbook 8/13

3 Things to Try

Additional ideas to try:

• Try using PostGIS – you will need to change your main method to:

JDataStoreWizard wizard = new JDataStoreWizard(new PostgisDataStoreFactory());

• And then connect with the following parameters. The login credentials
are readonly/readonly

The database is provided by the Climate Change Integration Plugfest for
the FOSS4G conference.

Remember you will need to add gt-postgis as a dependency in your
pom.xml fle.

Filter Workbook 9/13

• If you are using this workbook after the FOSS4G conference try this
service hosted by Refractions. The credentials are demo/demo.

Refractions is responsible for the PostGIS spatial extension to PostgreSQL
– although now it is an independent OSGeo project.

• FeatureCollection has a few more things you can do with it – for example
count the number of features returned.

Add the following button:

 menu.add(new SafeAction("Count") {
 public void action(ActionEvent e) throws Throwable {
 countFeatures();
 }
 });

And fll in the code for countFeatures.

 public void countFeatures() throws Exception {
 String typeName = (String) types.getSelectedItem();
 FeatureSource source = datastore.getFeatureSource(typeName);

 Filter filter = CQL.toFilter(text.getText());
 FeatureCollection features = source.getFeatures(filter);

 int count = features.size();
 JOptionPane.showMessageDialog(text, "Number of selected features:" + count);
 }

• We have seen how to represent a Filter using CQL; there is also the
original XML representation to work with.

Configuration configuration = new org.geotools.filter.v1_0.OGCConfiguration();
Parser parser = new Parser(configuration);
...
Filter filter = (Filter) parser.parse(inputstream);

If you need a xml fle to start from you can write one out using.

Configuration = new org.geotools.filter.v1_0.OGCConfiguration();
Encoder encoder = new org.geotools.xml.Encoder(configuration);

encoder.encode(filter, org.geotools.filter.v1_0.OGC.FILTER, outputstream);

• GeoTools provides a confguration for both Filter 1.0 and Filter 1.1.

Filter Workbook 10/13

• In the Examples above we only used a Filter to select content – there is
also DefaultQuery that can be used if you would like more control over
what you get back.

You can use DefaultQuery to specify sort order; limit the number of
attributes returned and perform a couple of out of the box
transformations.

 public void queryFeatures() throws Exception {
 String typeName = (String) types.getSelectedItem();
 FeatureSource source = datastore.getFeatureSource(typeName);

 FeatureType schema = source.getSchema();
 String name = schema.getGeometryDescriptor().getLocalName();

 Filter filter = CQL.toFilter(text.getText());

 DefaultQuery query = new DefaultQuery(schema.getName().getLocalPart(), filter,
 new String[] { name });

 FeatureCollection<SimpleFeatureType, SimpleFeature> features = source.getFeatures(query);

 FeatureCollectionTableModel model = new FeatureCollectionTableModel(features);
 table.setModel(model);
 }

• Finally, one of the interesting things to do is actually process the
features for a result. Here is some code that will go through the features
and fnd the center.

 private void centerFeatures() throws Exception {
 String typeName = (String) types.getSelectedItem();
 FeatureSource source = datastore.getFeatureSource(typeName);

 Filter filter = CQL.toFilter(text.getText());
 FeatureCollection<SimpleFeatureType, SimpleFeature> features = source.getFeatures(filter);

 double totalX = 0.0;
 double totalY = 0.0;
 long count = 0;
 FeatureIterator<SimpleFeature> iterator = features.features();
 try {
 while (iterator.hasNext()) {
 SimpleFeature feature = iterator.next();
 Geometry geom = (Geometry) feature.getDefaultGeometry();
 Point centroid = geom.getCentroid();
 totalX += centroid.getX();
 totalY += centroid.getY();
 count++;
 }
 } finally {
 iterator.close(); // IMPORTANT
 }
 double averageX = totalX / (double) count;
 double averageY = totalY / (double) count;
 Coordinate center = new Coordinate(averageX, averageY);
 JOptionPane.showMessageDialog(text, "Center of selected features:" + center)
 }

Filter Workbook 11/13

4 Filter

To request information from a FeatureSource we are going to need to

describe (or select) what information we want back. The data structure we

use for this is called a Filter.

We have a nice parser in GeoTools that can be used to create a Filter in a

human readable form.

Filter filter = CQL.toFilter("POPULATION > 30000");

The format used here is called “Common Query Language” and is similar to

the where clause of an SQL select statement.

We can also make spatial flters using CQL – geometry is expressed using

the same Well Known Text format employed earlier for JTS Geometry.

Filter pointInPolygon = CQL.toFilter("CONTAINS(THE_GEOM, POINT(1 2))");
Filter clickedOn = CQL.toFilter("BBOX(ATTR1, 151.12, 151.14, -33.5, -33.51)";

You may also skip CQL and make direct use of a FilterFactory.

FilterFactory ff = CommonFactoryFinder.getFilterFactory(null);

Filter filter = ff.propertyGreaterThan(ff.property("POPULATION"), ff.literal(12));

Your IDE should provide command completion allowing you to quickly see

what is available from FilterFactory.

Note, flter is a real live java object that you can use do to work.

if(filter.evaluate(feature)){
 System.out.println("Selected "+ feature.getId();
}

The implementation in GeoTools is very fexible and able to work on

Features, HashMaps and JavaBeans.

4.1 Expression

You may have missed it in the last section; but we also described how to

access data using an expression. Here are some examples:

ff.property("POPULATION"); // expression used to access the attribute POPULATION from a feature
ff.literal(12); // the number 12

Filter Workbook 12/13

CQL is

defned as

part of the

OGC Catalog

specifcation.

You can also make function calls using the expression library; here are

some examples in CQL:

CQL.toExpression("buffer(THE_GEOM)");
CQL.toExpression("strConcat(CITY_NAME, POPULATION)");
CQL.toExpression("distance(THE_GEOM, POINT(151.14,-33.51))");

4.2 Query

The Query data structure is used to ofer fner grain control on the results

returned. The following query will request THE_GEOM and POPULATION

from a FeatureSource “cities”.

DefaultQuery query = new DefaultQuery("cities", filter, new String[]{ "THE_GEOM", "POPULATION" });

4.3 FeatureCollection

Previously we added features to a FeatureCollection during the CSV2SHP

example. This was easy as the FeatureCollection was in memory at the

time. When working with spatial data we try to not have a

FeatureCollection in memory because spatial data gets big in a hurry.

Special care is needed when stepping through the contents of a

FeatureCollection with a FeatureIterator. A FeatureIterator will actually be

streaming the data of disk and we need to remember to close the stream

when we are done.

Even though a FeatureCollection is a “Collection” it is very lazy and does

not load anything until you start iterating through the contents.

The closest Java concepts I have to FeatureCollection and FeatureIterator

come from JDBC as shown below.

FeatureSource View

FeatureStore Table

FeatureCollection PreparedStatement

FeatureIterator ResultSet

If that is too much just remember – please close your feature iterator

when you are done. If not you will leak resources and get into trouble.

Filter Workbook 13/13

	1 Welcome
	2 Filter Lab
	2.1 Running the Application

	3 Things to Try
	4 Filter
	4.1 Expression
	4.2 Query
	4.3 FeatureCollection

